Skip to main content
Log in

Novel application of decalin and methyl-β-cyclodextrin in the activated seed swelling technique

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Activated seed swelling technique is commonly used in synthesis of micron sized polymeric particles. Carrier (acetone) and hydrophobe (1-chlorododecane) molecules are two essential components of the swelling system. The interference of acetone and/or 1-chlorododecane residues on particle swelling make this method difficult to carry out and even could cause a polydisperse seed swelling. In order to improve this method and shorten the process time, two alternative strategies were introduced: a carrier-free procedure using decalin instead of 1-chlorododecane, and the application of methyl-β-cyclodextrin as the carrier in place of acetone. The results showed that both alternative systems are practical, easy to carry out, less time consuming and lead to a monodisperse particle swelling under favorable conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ugelstad J, Berge A, Ellingsen T, Schmid R, Nilsen N, Mork PC, Stenstad P, Hornes E, Olsvik O (1992) Prog Polym Sci 17:87–161

    Article  CAS  Google Scholar 

  2. Ugelstad J, Mork PC, Kaggerud KH, Ellingsen T, Berge A (1980) Adv Colloid Interf Sci 13:101–140

    Article  CAS  Google Scholar 

  3. Ahmad H, Tofaz T, Oli MWU, Rahman MA, Miah MAJ, Tauer K (2010) Mater Sci Appl 1:109–117

    CAS  Google Scholar 

  4. Barrett KEJ (1975) Dispersion polymerization in organic media. Wiley, London

    Google Scholar 

  5. Almong Y, Reich S, Levy M (1982) Br Polym J 14:131–136

    Article  Google Scholar 

  6. Ober CK, Lok KP (1987) Macromolecules 20:268–273

    Article  CAS  Google Scholar 

  7. Lok KP, Ober CK (1985) Can J Chem 63:209–216

    Article  CAS  Google Scholar 

  8. Kawaguchi S, Ito K (2005) Adv Polym Sci 175:299–328

    Article  CAS  Google Scholar 

  9. Chen CW, Chen CY, Lin CL (2011) J Polym Res 18:587–594

    Article  CAS  Google Scholar 

  10. Bradford EB, Vanderhoff JW (1955) J Appl Phys 26:684–871

    Article  Google Scholar 

  11. Okubo M, Shiozaki M, Tsujihiro M, Tsukuda Y (1991) Colloid Polym Sci 269:222–226

    Article  CAS  Google Scholar 

  12. Okubo M, Nakagawa T (1992) Colloid Polym Sci 270:853–858

    Article  CAS  Google Scholar 

  13. Okubo M, Yamashita T, Suzuki T, Shimizu T (1997) Colloid Polym Sci 275:288–292

    Article  CAS  Google Scholar 

  14. Ahmad H, Tauer K (2003) Macromolecules 36:648–653

    Article  CAS  Google Scholar 

  15. Zohrehvand S (2005) Polym Int 54:1191–1195

    Article  CAS  Google Scholar 

  16. Lau W (1996) Improved method for forming polymers. EP patent 0710675

  17. Van Aert H, Storsberg J, Ritter H, Van Roost C (2002) Method of preparing Polymer particles having narrow particle size distribution. US patent 0173610 A1

  18. Szejtli J (1998) Chem Rev 98:1743–1753

    Article  CAS  Google Scholar 

  19. Szejtli J, Osa T (1996) Comprehensive supramolecular chemistry. Vol. 3. Pergamon, Oxford

    Google Scholar 

  20. Shuai XT, Porbeni FE, Wei M, Shin ID, Tonelli AE (2001) Macromolecules 34:7355–7361

    Article  CAS  Google Scholar 

  21. Rusa CC, Shuai X, Shin ID, Bullions TA, Wei M, Porbeni FE, Lu J, Huang L, Fox J, Tonelli AE (2004) J Polym Environ 12:157–163

    Article  CAS  Google Scholar 

  22. Ritter R, Storsberg J (2000) Macromol Rapid Commun 21:236–241

    Article  Google Scholar 

  23. Ritter H, Steffens C, Storsberg J (2005) e-Polymers 34:1–6

    Google Scholar 

  24. Ritter H, Storsberg J, van Aert H, Van Roost C (2003) Macromolecules 36:50–53

    Article  Google Scholar 

  25. Rimmer S (2000) Macromol Symp 150:149–154

    Article  CAS  Google Scholar 

  26. Rimmer S, Tattersall P (1999) Polymer 40:5729–5731

    Article  CAS  Google Scholar 

  27. Rimmer S, Tattersall P (1999) Polymer 40:6673–6677

    Article  CAS  Google Scholar 

  28. Li S, Hu J, Liu B, Li H, Wang D, Liao X (2004) Polymer 45:1511–1516

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks University of Toronto for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiva Zohrehvand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zohrehvand, S. Novel application of decalin and methyl-β-cyclodextrin in the activated seed swelling technique. J Polym Res 20, 103 (2013). https://doi.org/10.1007/s10965-013-0103-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0103-y

Keywords

Navigation