Skip to main content
Log in

Superconducting State of Metallic Clusters: Potential for Room Temperature Superconductivity, Novel Nano-Based Tunneling Networks

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Metallic clusters contain delocalized electrons, and their states form energy shells similar to those in atoms or nuclei. Under special but perfectly realistic conditions, superconducting pairing in such nanoclusters can become very strong, and they form a new family of high temperature superconductors. In principle, it is possible to raise T C up to room temperature. The phenomenon is promising for the creation of high T C superconducting tunneling networks, and hence macroscopic superconductivity. The synchronization of such networks is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Knight, W., Clemenger, K., de Heer, W., Saunders, W., Chou, M., Cohen, M.: Phys. Rev. Lett. 52, 2141 (1984)

    Article  ADS  Google Scholar 

  2. de Heer, W.: Rev. Mod. Phys. 65, 611 (1993)

    Article  ADS  Google Scholar 

  3. Knight, W.: In: Wolf, S., Kresin, V.Z. (eds.) Novel Superconductivity, p. 47. Plenum, New York (1987)

    Chapter  Google Scholar 

  4. Friedel, J.: J. Phys. (Paris) 2, 959 (1952)

    Google Scholar 

  5. Ovchinnikov, Y., Kresin, V.: Europhys. B 45, 5 (2005)

    ADS  Google Scholar 

  6. Ovchinnikov, Y., Kresin, V.: Europhys. B 47, 333 (2005)

    ADS  Google Scholar 

  7. Kresin, V., Ovchinnikov, Y.: Phys. Rev. B 74, 024514 (2006)

    Article  ADS  Google Scholar 

  8. Ovchinnikov, Y., Kresin, V.: Phys. Rev. B 81, 214505 (2010)

    Article  ADS  Google Scholar 

  9. Ovchinnikov, Y., Kresin, V.: Phys. Rev. B 85, 064518 (2011)

    Article  ADS  Google Scholar 

  10. Kresin, V., Ovchinnikov, Y.: Phys. Usp. 51, 427 (2008)

    Article  ADS  Google Scholar 

  11. Kresin, V., Ovchinnikov, Y.: J. Supercond. Nov. Magn. 25, 711 (2012)

    Article  Google Scholar 

  12. Groitery, M., Shanenko, A., Kaen, C., Peeters, F.: Phys. Rev. B 83, 214509 (2011)

    Article  ADS  Google Scholar 

  13. Garcia-Garcia, A., Urbina, Y., Yzbahyan, E., Richter, K., Altshuler, B.: Phys. Rev. B 83, 014510 (2011)

    Article  ADS  Google Scholar 

  14. Lindernfeld, Z., Eisenberg, E., Lifshitz, R.: Phys. Rev. B 84, 064532 (2011)

    Article  ADS  Google Scholar 

  15. Ring, P., Schuck, P.: The Nuclear Many-Body Problem. Springer, New York (1980)

    Book  Google Scholar 

  16. Frauendorf, S., Guet, C.: Annu. Rev. Nucl. Part. Sci. 51, 219 (2001)

    Article  ADS  Google Scholar 

  17. Bohr, A., Mottelson, B., Pines, D.: Phys. Rev. 110, 936 (1958)

    Article  ADS  Google Scholar 

  18. Belyaev, S.: Mat. Fys. Medd. Dan. Vid. Selsk. 31, 131 (1959)

    MathSciNet  Google Scholar 

  19. Migdal, A.: Nucl. Phys. 13, 655 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  20. Labbe, J., Baristic, S., Friedel, J.: Phys. Rev. Lett. 19, 1039 (1967)

    Article  ADS  Google Scholar 

  21. McMillan, W.: Phys. Rev. B 167, 331 (1968)

    Article  ADS  Google Scholar 

  22. Grimvall, G.: The Electron–Phonon Interaction in Metals. North-Holland, Amsterdam (1981)

    Google Scholar 

  23. Abrikosov, A., Gor’kov, L., Dzyaloshinski, I.: Methods of Quantum Field Theory in Statistical Physics. Dover, New York (1975)

    Google Scholar 

  24. Hock, C., Schmidt, M., Issendorft, B.V.: Phys. Rev. B 84, 113401 (2011)

    Article  ADS  Google Scholar 

  25. Jain, A., Likharev, K., Likens, J., Sauvageau, J.: Phys. Rep. 109(3), 09 (1984)

    Google Scholar 

  26. Cawthone, A., Barbara, P., Shitov, S., Lobb, C., Wiesenfeld, K., Zangwill, A.: Phys. Rev. B 60, 7575 (1999)

    Article  ADS  Google Scholar 

  27. Shouteden, K., Lando, A., Janssens, E., Van Haesendonck, C., Lievens, P.: New J. Phys. 10, 083005 (2008)

    Article  ADS  Google Scholar 

  28. Bednorz, J., Mueller, K.: Z. Phys. B 64, 189 (1986)

    Article  ADS  Google Scholar 

  29. Kresin, V., Friedel, J.: Europhys. Lett. 93, 13002 (2011)

    Article  ADS  Google Scholar 

  30. Duffe, S., Irawan, T., Bieletzki, M., Richter, T., Sieben, B., Yin, C., von Issendorft, B., Moseler, M., Hovel, H.: Eur. Phys. J. D 45, 401 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to K.A. Mueller, J. Friedel, and V.V. Kresin for valuable discussions.

The research of V.K. is supported by AFOSR. The research of Y.O. is supported by EOARD, Contract No. 09700.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Z. Kresin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kresin, V.Z., Ovchinnikov, Y.N. Superconducting State of Metallic Clusters: Potential for Room Temperature Superconductivity, Novel Nano-Based Tunneling Networks. J Supercond Nov Magn 26, 745–748 (2013). https://doi.org/10.1007/s10948-012-1961-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-012-1961-y

Keywords

Navigation