Skip to main content
Log in

Description of collective effects in computer models of water

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The dynamics of a system containing 3456 water molecules in a cubic cell with periodic boundary conditions at 297 K was simulated. The time dependence of distances between oxygen atoms was examined for many pairs of molecules. These distances often oscillate around a certain average value over long periods of time (10 ps and longer). These average values can be about 2.8 Å (hydrogen bond) or much larger, up to 12–13 Å and more. This suggests that big groups of molecules are involved in a concerted motion. Lists of hydrogen bonds in 50 configurations divided by an interval of about 1 ps are compared. The average lifetime of a hydrogen bond is about 7 ps. The network of hydrogen bonds is colored according to their lifetimes for one of the configurations. The bonds that live longer than 7 ps form an infinite cluster. The bonds that live longer than 8 ps join to form a great number of finite clusters including several hundreds of nodes (molecules). These clusters contain few closed cycles. Even the bonds that live longer than 20 ps are united into clusters each containing two or three nodes (molecules). The self-diffusion coefficient for molecules involved in long-lived bonds is likely to be slightly smaller than that for molecules which do not participate in these bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Holz, S. R. Heil, and A. Sacco, Phys. Chem. Chem. Phys., 2, 4740–4742 (2000).

    Article  CAS  Google Scholar 

  2. M. Bée, Quasielastic Neutron Scattering. Principles and Applications in Solid State Chemistry, Biology and Material Science, Adam Higler, Bristol, Philadelphia (1988).

    Google Scholar 

  3. Ya. I. Frenkel, Kinetic Theory of Liquids [in Russian], Nauka, Leningrad (1975).

    Google Scholar 

  4. V. S. Oskotskii, Fiz. Tverd. Tela, 5, No. 4, 1082–1085 (1963).

    CAS  Google Scholar 

  5. L. A. Bulavin, N. P. Malomuzh, and K. N. Pankratov, J. Struct. Chem., 47, No. 1, 48–55 (2006).

    Article  CAS  Google Scholar 

  6. L. A. Bulavin, N. P. Malomuzh, and K. N. Pankratov. ibid., Supplement, S50–S60.

  7. A. G. Novikov, M. N. Rodnikova, V. V. Savostin, and O. V. Sobolev, Zh. Fiz. Khim., 68, No. 11, 1982–1986 (1994).

    CAS  Google Scholar 

  8. I. S. Andrianova, O. Ya. Samoilov, and I. Z. Fisher, Zh. Strukt. Khim., 8, No. 5, 813–816 (1967).

    CAS  Google Scholar 

  9. J. Teixeira, M. C. Bellissent-Funel, S. H. Chen, and A. J. Dianoux, Phys. Rev., A31, 1913–1920 (1985).

    Google Scholar 

  10. I. Z. Fisher, Zh. Éksp. Teor. Fiz., 61, No. 4, 1647–1659 (1971).

    CAS  Google Scholar 

  11. T. V. Lokotosh and N. P. Malomuzh, Physica, 286A, Nos. 3/4, 474–488 (2000).

    Google Scholar 

  12. C. Branca, A. Faraone, T. Lokotosh, et al., J. Mol. Liq., 93, Nos. 1–3, 139–149 (2001).

    Article  CAS  Google Scholar 

  13. L. A. Bulavin, T. V. Lokotosh, N. P. Malomuzh, and K. S. Shakun, Ukr. Phys. J., 49, No. 6, 557–562 (2004).

    Google Scholar 

  14. I. Ohmine, H. Tanaka, and P. G. Wolynes, J. Chem. Phys., 89, No. 9, 5852–5860 (1988).

    Article  Google Scholar 

  15. D. Bertolini, A. Tani, and R. Vallauri, Mol. Phys., 73, No. 1, 69–78 (1991).

    Article  CAS  Google Scholar 

  16. V. I. Poltev, T. A. Grokhlina, and G. G. Malenkov, J. Biomolec. Struct. Dynam., 2, No. 2, 421–429 (1984).

    Google Scholar 

  17. V. P. Voloshin, E. A. Zheligovskaya, G. G. Malenkov, et al., Ros. Khim. Zh. (Zh. Ros. Khim. O-va Mendeleeva), 45, No. 3, 31–37 (2001).

    CAS  Google Scholar 

  18. J. S. Kasper and S. M. Richards, Acta Crystallogr., 17, 152–755 (1964).

    Article  Google Scholar 

  19. G. G. Malenkov, M. M. Frank-Kamenetskii, and A. G. Grivtsov, Zh. Strukt. Khim., 28, No. 2, 81–85 (1987).

    CAS  Google Scholar 

  20. G. G. Malenkov and D. L. Tytik, Molecular Dynamic Method in Physical Chemistry [in Russian], Yu. K. Tovbin (ed.), Nauka, Moscow (1996), pp. 204–233 (see also pp. 85–87).

    Google Scholar 

  21. G. G. Malenkov and D. L. Tytik, Izv. Ross. Akad. Nauk, Ser. Fiz., 64, No. 8, 1469–1474 (2000).

    CAS  Google Scholar 

  22. G. G. Malenkov, J. Struct. Chem., 47, Supplement, S1–S31 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Naberukhin.

Additional information

Original Russian Text Copyright © 2007 by V. P. Voloshin, G. G. Malenkov, and Yu. I. Naberukhin

__________

Translated from Zhurnal Strukturnoi Khimii, Vol. 48, No. 6, pp. 1133–1138, November–December, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voloshin, V.P., Malenkov, G.G. & Naberukhin, Y.I. Description of collective effects in computer models of water. J Struct Chem 48, 1066–1072 (2007). https://doi.org/10.1007/s10947-007-0172-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10947-007-0172-z

Keywords

Navigation