Skip to main content
Log in

Classification of Hemodynamic Responses Associated With Force and Speed Imagery for a Brain-Computer Interface

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Functional near-infrared spectroscopy (fNIRS) is an emerging optical technique, which can assess brain activities associated with tasks. In this study, six participants were asked to perform three imageries of hand clenching associated with force and speed, respectively. Joint mutual information (JMI) criterion was used to extract the optimal features of hemodynamic responses. And extreme learning machine (ELM) was employed to be the classifier. ELM solved the major bottleneck of feedforward neural networks in learning speed, this classifier was easily implemented and less sensitive to specified parameters. The 2-class fNIRS-BCI system was firstly built with an average accuracy of 76.7 %, when all force and speed tasks were categorized as one class, respectively. The multi-class systems based on different levels of force and speed attempted to be investigated, the accuracies were moderate. This study provided a novel paradigm for establishing fNIRS-BCI system, and provided a possibility to produce more degrees of freedom in BCI system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Coyle, S. M., Ward, T. E., and Markham, C. M., Brain-computer interface using a simplified functional near-infrared spectroscopy system. J. Neural Eng. 4(3):219–226, 2007. doi:10.1088/1741-2560/4/3/007.

    Article  Google Scholar 

  2. Fazli, S., Mehnert, J., Steinbrink, J., Curio, G., Villringer, A., Muller, K. R., and Blankertz, B., Enhanced performance by a hybrid NIRS-EEG brain computer interface. Neuroimage 59(1):519–529, 2012. doi:10.1016/j.neuroimage.2011.07.084.

    Article  Google Scholar 

  3. Birbaumer, N., Breaking the silence: brain-computer interfaces (BCI) for communication and motor control. Psychophysiology 43(6):517–532, 2006. doi:10.1111/j.1469-8986.2006.00456.x.

    Article  Google Scholar 

  4. Mcfarland, D. J., and Wolpaw, J. R., Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6):767–791, 2002. doi:10.1016/S1388-2457(02)00057-3.

    Article  Google Scholar 

  5. Şen, B., Peker, M., Çavuşoğlu, A., and Çelebi, F. V., A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms. J. Med. Syst. 38(3):1–21, 2014. doi:10.1007/s10916-014-0018-0.

    Google Scholar 

  6. Zhang, L., He, W., He, C., and Wang, P., Improving mental task classification by adding high frequency band information. J. Med. Syst. 34(1):51–60, 2010. doi:10.1007/s10916-008-9215-z.

    Article  Google Scholar 

  7. Egger, J., Kappus, C., Freisleben, B., and Nimsky, C., A medical software system for volumetric analysis of cerebral pathologies in magnetic resonance imaging (MRI) data. J. Med. Syst. 36(4):2097–2109, 2012. doi:10.1007/s10916-011-9673-6.

    Article  Google Scholar 

  8. Kimura, Y., Tanaka, T., Higashi, H., and Morikawa, N., SSVEP-based brain-computer interfaces using FSK-modulated visual stimuli. IEEE Trans. Biomed. Eng. 60(10):2831–2838, 2013. doi:10.1109/TBME.2013.2265260.

    Article  Google Scholar 

  9. Li, Y. Q., Pan, J. H., Wang, F., and Yu, Z. L., A hybrid BCI system combining P300 and SSVEP and its application to wheelchair control. IEEE Trans. Biomed. Eng. 60(11):3156–3166, 2013. doi:10.1109/TBME.2013.2270283.

    Article  Google Scholar 

  10. Everdell, N. L., Gibson, A. P., Tullis, I. D. C., Vaithianathan, T., Hebden, J. C., and Delpy, D. T., A frequency multiplexed near-infrared topography system for imaging functional activation in the brain. Rev. Sci. Instrum. 76(9):093705, 2005.

    Article  Google Scholar 

  11. Chen, M., Guan, J. N., and Liu, H. H., Enabling fast brain-computer interaction by single-trial extraction of visual evoked potentials. J. Med. Syst. 35(5):1323–1331, 2011. doi:10.1007/s10916-011-9696-z.

    Article  Google Scholar 

  12. Rodriguez-Bermudez, G., and Garcia-Laencina, P. J., Automatic and adaptive classification of electroencephalographic signals for brain computer interfaces. J. Med. Syst. 36(1):S51–S63, 2012. doi:10.1007/s10916-012-9893-4.

    Article  Google Scholar 

  13. Sitaram, R., Caria, A., and Birbaumer, N., Hemodynamic brain-computer interfaces for communication and rehabilitation. Neural Netw. 22(9):1320–1328, 2009. doi:10.1016/j.neunet.2009.05.009.

    Article  Google Scholar 

  14. Coyle, S., Ward, T., Markham, C., and Mcdarby, G., On the suitability of near-infrared (NIR) systems for next-generation brain–computer interfaces. Physiol. Meas. 25(4):815–822, 2004. doi:10.1088/0967-3334/25/4/003.

    Article  Google Scholar 

  15. Naseer, N., and Hong, K., fNIRS-based brain-computer interfaces: a review. Front. Hum. Neurosci. 2015. doi:10.3389/fnhum.2015.00003. 9(3).

    Google Scholar 

  16. Naseer, N., Hong, M. J., and Hong, K. S., Online binary decision decoding using functional near-infrared spectroscopy for the development of brain–computer interface. Eep. Brain. Res. 232(2):555–564, 2014. doi:10.1007/s00221-013-3764-1.

    Article  Google Scholar 

  17. Matthews, F., Pearlmutter, B. A., Ward, T. E., Soraghan, C., and Markham, C., Hemodynamics for brain-computer interfaces. IEEE Signal Proc. Mag. 25(1):87–94, 2008. doi:10.1109/MSP.2008.4408445.

    Article  Google Scholar 

  18. Cui, X., Bray, S., Bryant, D. M., Glover, G. H., and Reiss, A. L., A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. NeuroImage 54(4):2808–2821, 2011. doi:10.1016/j.neuroimage.2010.10.069.

    Article  Google Scholar 

  19. Villringer, A., Planck, J., and Hock, C., Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults. Neurosci. Lett. 154(1):101–104, 1993. doi:10.1016/0304-3940(93)90181-J.

    Article  Google Scholar 

  20. Huppert, T. J., Hoge, R. D., Diamond, S. G., Franceschini, M. A., Boas, A. D. A., and Onaral, B., A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans. Neuroimage 29(2):368–382, 2009. doi:10.1016/j.neuroimage.2005.08.065.

    Article  Google Scholar 

  21. Ferrari, M., and Quaresima, V., A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 63(2):921–935, 2012. doi:10.1016/j.neuroimage.2012.03.049.

    Article  Google Scholar 

  22. Power, S. D., Falk, T. H., and Chau, T., Classification of prefrontal activity due to mental arithmetic and music imagery using hidden Markov models and frequency domain near-infrared spectroscopy. J. Neural Eng. 7(2):26002, 2010. doi:10.1088/1741-2560/7/2/026002.

    Article  Google Scholar 

  23. Luu, S., and Chau, T., Decoding subjective preference from single-trial near-infrared spectroscopy signals. J. Neural Eng. 6(1):016003, 2009. doi:10.1088/1741-2560/6/1/016003.

    Article  Google Scholar 

  24. Naseer, N., and Hong, K.-S., Classification of functional near-infrared spectroscopy signals corresponding to the right- and left-wrist motor imagery for development of a brain-computer interface. Neurosci. Lett. 553:84–89, 2013. doi:10.1016/j.neulet.2013.08.021.

    Article  Google Scholar 

  25. Sitaram, R., Zhang, H. H., Guan, C. T., Thulasidas, M., Hoshi, Y., Ishikawa, A., Shimizu, K., and Birbaumer, N., Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain-computer interface. Neuroimage 34(4):1416–1427, 2007. doi:10.1016/j.neuroimage.2006.11.005.

    Article  Google Scholar 

  26. Hong, K.-S., Naseer, N., and Kim, Y.-H., Classification of prefrontal and motor cortex signals for three-class fNIRS–BCI. Neurosci. Lett. 587:87–92, 2015. doi:10.1016/j.neulet.2014.12.029.

    Article  Google Scholar 

  27. Khan, M. J., Hong, M. J. Y., and Hong, K. S., Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface. Front. Hum. Neurosci. 8:244, 2014. doi:10.3389/fnhum.2014.00244.

    Google Scholar 

  28. Cope, M., The development of a near infrared spectroscopy system and its application for non invasive monitoring of cerebral blood and tissue oxygenation in the newborn infants. University of London, 1991.

  29. Duncan, A., Meek, J. H., Clemence, M., Elwell, C. E., Tyszczuk, L., Cope, M., and Delpy, D. T., Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy. Phys. Med. Biol. 40(2):295–304, 1995. doi:10.1088/0031-9155/40/2/007.

    Article  Google Scholar 

  30. Yang, H.H., and Moody, J.E., Data visualization and feature selection: new algorithms for nongaussian data. NIPS. 687–702, 1999.

  31. Huang, G. B., Zhu, Q. Y., and Siew, C. K., Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501, 2006. doi:10.1016/j.neucom.2005.12.126.

    Article  Google Scholar 

  32. Huang, G.-B., Zhou, H., Ding, X., and Zhang, R., Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst., Man, Cybern., Syst. 42(2):513–529, 2012. doi:10.1109/TSMCB.2011.2168604.

    Article  Google Scholar 

  33. Huang, G. B., Ding, X., and Zhou, H., Optimization method based extreme learning machine for classification. Neurocomputing 74(1):155–163, 2010. doi:10.1016/j.neucom.2010.02.019.

    Article  Google Scholar 

  34. Xu, B., Fu, Y., Shi, G., Yin, X., Wang, Z., and Li, H., Improving classification by feature discretization and optimization for fNIRS-based BCI. J. Biomim. Biomat. Tiss. Eng. 19(1):1–5, 2014.

    Google Scholar 

  35. Gottemukkula, V. and Derakhshani, R., Classification-guided feature selection for NIRS-based BCI. In: Proc. 5th Int. IEEE EMBS Conf. on Neural Engineering, Cancun, Mexico, pp.72-75, Apr. 27- May 1, 2011.

  36. Müller-Putz, G. R., and Scherer, R., Better than random? a closer look on BCI results. Int. J. Bioelectrom. 10(1):52–55, 2008.

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation (NNSF) of China under Grant 61203368, 81470084 and 61463024 and General Reserve Department of PLA under Grant 9140A26060214ZK63424.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baolei Xu.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Xu, B., Jiang, C. et al. Classification of Hemodynamic Responses Associated With Force and Speed Imagery for a Brain-Computer Interface. J Med Syst 39, 53 (2015). https://doi.org/10.1007/s10916-015-0236-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0236-0

Keywords

Navigation