Skip to main content
Log in

Image Deblurring Via Total Variation Based Structured Sparse Model Selection

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we study the image deblurring problem based on sparse representation over learned dictionary which leads to promising performance in image restoration in recent years. However, the commonly used overcomplete dictionary is not well structured. This shortcoming makes the approximation be unstable and demand much computational time. To overcome this, the structured sparse model selection (SSMS) over a family of learned orthogonal bases was proposed recently. In this paper, We further analyze the properties of SSMS and propose a model for deblurring under Gaussian noise. Numerical experimental results show that the proposed algorithm achieves competitive performance. As a generalization, we give a modified model for deblurring under salt-and-pepper noise. The resulting algorithm also has a good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aharon, M., Elad, M., Bruckstein, A.M.: The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54, 4311–4322 (2006)

    Article  Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2, 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4, 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai, J., Chan, R., Nikolova, M.: Two-phase approach for deblurring images corrupted by impulse plus gaussian noise. Inverse Probl. Imaging 2, 187–204 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, J., Chan, R., Nikolova, M.: Fast two-phase image deblurring under impulse noise. J. Math. Imaging Vis. 36, 46–53 (2010)

    Article  MathSciNet  Google Scholar 

  6. Cai, J., Huang, S., Ji, H., Shen, Z., Ye, G.: Data-driven tight frame construction and image denoising. Appl. Comput. Harmon. Anal. 37, 89–105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cai, J., Osher, S., Shen, Z.: Split Bregman mehods and frame based image restoration. Multiscale Model. Simul. 8, 337–369 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imag. Vis. 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  9. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chatterjee, P., Milanfar, P.: Clustering-based denoising with locally learned dictionaries. IEEE Trans. Image Process. 18, 1438–1451 (2009)

    Article  MathSciNet  Google Scholar 

  11. Cho, T.S., Joshi, N., Zitnick, C.L., Kang, S.B., Szeliski, R., Freeman, W.T.: A content-aware image prior. In: CVPR, pp. 169–176 (2010)

  12. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  13. Dong, Y., Hintermüler, M., Neri, M.: An efficient primal-dual method for L1-TV image restoration. SIAM J. Imaging Sci. 2, 1168–1189 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dong, Y., Zeng, T.: A convex variational model for restoring blurred images with multiplicative noise. SIAM J. Imaging Sci. 6, 1598–1625 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Effros, A., Leung, T.: Texture synthesis by non-parametric sampling. In: Proceedings of the 7th IEEE International Conference on Computer Vision, vol. 2, pp. 1033–1038 (1999)

  16. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15, 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  17. Elad, M., Figueiredo, M., Ma, Y.: On the role of sparse and redundant representations in image processing. Proc. IEEE 98, 972–982 (2010)

    Article  Google Scholar 

  18. Figueiredo, M., Bioucas-Dias, J., Nowak, R.: Majorization–minimization algorithms for wavelet-based image restoration. IEEE Trans. Image Process. 15, 2980–2991 (2007)

    Article  MathSciNet  Google Scholar 

  19. Figueiredo, M., Bioucas-Dias, J.: Restoration of Poissonian images using alternating direction optimization. IEEE Trans. Image Process. 19, 3133–3145 (2010)

    Article  MathSciNet  Google Scholar 

  20. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7, 1005–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, X., Li, F., Ng, M.: A fast \(l^1\)-TV algorithm for image restoration. SIAM J. Sci. Comput. 31, 2322–2341 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Goldstein, T., Osher, S.: The split Bregman method for l1 regularized problems. SIAM J. Imaging Sci. 8048, 323–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Haghighat, M., Zonouz, S., Abdel-Mottaleb, M.: Identification using encrypted biometrics. Comput. Anal. Images Patterns 2, 440–448 (2013)

    Article  MathSciNet  Google Scholar 

  24. Hu, Z., Huang, J., Yang, M.: Single image deblurring with adaptive dictionary learning. In: Proceedings of IEEE ICIP, pp. 1169–1172 (2010)

  25. Huang, Y., Ng, M., Wen, Y.: A new total variation method for multiplicative noise removal. SIAM J. Imaging Sci. 2, 20–40 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hwang, H., Haddad, R.: Adaptive median filters: new algorithms and results. IEEE Trans. Image Process. 4, 499–502 (1995)

    Article  Google Scholar 

  27. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-Laplacian priors. In: NIPS, pp. 1033–1041 (2009)

  28. Li, Y., Shen, L., Dai, D., Suter, B.: Framelet algorithms for de-blurring images corrupted by impulse plus Gaussian noise. IEEE Trans. Image Process. 20, 123–139 (2011)

    MathSciNet  Google Scholar 

  29. Liu, Q., Liang, D., Song, Y., Luo, J., Zhu, Y., Li, W.: Augmented Lagrangian-based sparse representation method with dictionary updating for image deblurring. SIAM J. Imaging Sci. 6, 1689C–1718 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lou, Y., Bertozzi, A., Soatto, S.: Direct sparse deblurring. J. Math. Imaging Vis. 39, 1–12 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ma, L., Yu, J., Zeng, T.: Sparse representation prior and total variation-based image deblurring under impulse noise. SIAM J. Imaging Sci. 6, 2258–2284 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: Proceedings of ICCV, pp. 2272–2279 (2009)

  33. Mairal, J., Sapiro, G., Elad, M.: Learning multiscale sparse representations for image and video restoration. SIAM Multiscale Model. Simul. 7, 214–241 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. Pattern Anal. Mach. Intell. 18, 837–842 (1996)

    Article  Google Scholar 

  35. Neelamani, R., Choi, H., Baraniuk, R.: ForWaRD: Fourier wavelet regularized deconvolution for ill-condituined systems. IEEE Trans. Signal Process. 52, 418–433 (2004)

    Article  MathSciNet  Google Scholar 

  36. Olshausen, B., Field, D.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)

    Article  Google Scholar 

  37. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wu, C., Zhang, J., Tai, X.-C.: Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Probl. Imaging 5, 237–261 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xiao, Y., Zeng, T., Yu, J., Ng, M.K.: Restoration of images corrupted by mixed Gaussian-impulse noise via \(l^1-l^0\) minimization. Pattern Recognit. 44, 1708–1720 (2011)

    Article  MATH  Google Scholar 

  40. Yang, J., Zhang, Y., Yin, W.: An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise. SIAM J. Sci. Comput. 31, 2842–2865 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yu, G., Sapiro, G., Mallat, S.: Image modeling and enhancement via structured sparse model selection. In: ICIP, pp. 1641–1644 (2010)

  42. Yu, G., Sapiro, G., Mallat, S.: Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity. IEEE Trans. Image Process. 21, 2481–2499 (2012)

    Article  MathSciNet  Google Scholar 

  43. Zeng, T., Li, X., Ng, M.: Alternating minimization method for total variation based wavelet shrinkage model. Commun. Comput. Phys. 8, 976–994 (2010)

    MathSciNet  Google Scholar 

  44. Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3, 253–C276 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. In: ICCV, pp. 479–486 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tieyong Zeng.

Additional information

The research is supported by the National Natural Science Foundation of China (No. 11271049, 61402462), RGC 211911, 12302714 and RFGs of HKBU.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Zeng, T. Image Deblurring Via Total Variation Based Structured Sparse Model Selection. J Sci Comput 67, 1–19 (2016). https://doi.org/10.1007/s10915-015-0067-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0067-7

Keywords

Navigation