Skip to main content
Log in

Bioethanol combustion based on a reduced kinetic mechanism

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Bioethanol is a fuel additive or a fuel substitute that has the benefit of being cleaner and price competitive with gasoline. Therefore, we develop a reduced kinetic mechanism capable of modeling the ethanol combustion and the generation of the combustion products \(\text{H}_{2}\text{O},~\text{CO}_{2},~\text{CO},~ \text{H}_{2},~ \text{C}_{2}\text{H}_{4}\) and OH. Based on a mechanism composed by 372 reversible elementary reactions among 56 reactive species, we propose a reduction strategy to obtain an eight-step mechanism for the ethanol. The reduction strategy consists in estimating the order of magnitude of the reaction rate coefficients, defining the main chain, applying the steady-state and partial equilibrium hypotheses, and justifying the assumptions through an asymptotic analysis. The main advantage of the obtained reduced mechanism is the decrease of the work needed to solve the system of chemical equations proportionally to the number of elementary reactions present in the complete mechanism. Numerical tests are carried out for a jet diffusion flame of ethanol and the results compare well with available data in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.A. Kiss, Comput. Chem. Eng. 34, 812–820 (2010)

    Google Scholar 

  2. P. Bergeron, in Handbook on Bioethanol: Production and Utilization, ed. by C.E. Wyman (Taylor & Francis, New York, 1996), pp. 89–104

  3. K.M. Leung, R.P. Lindstedt, Combust. Flame 102, 129–160 (1995)

    Google Scholar 

  4. H.J. Curran, Proceedings of the European Combust, Meeting (2009)

  5. P.A. Libby, F.A. Williams, Ann. Rev. Fluid Mech. 8, 351–376 (1976)

    Google Scholar 

  6. T. Lu, C.K. Law, Combust. Flame 144, 24–36 (2006)

    Google Scholar 

  7. N. Peters, B. Roog, Reduced Kinetic Mechanisms for Applications in Combustion Systems, Lecture Notes in Physics (Springer, Berlin, 1993)

    Book  Google Scholar 

  8. C.K. Westbrook, Y. Mizobuchi, T.J. Poinsot, P.J. Smith, J. Warnatz, Proc. Combust. Inst. 30, 125–157 (2005)

    Google Scholar 

  9. P. Saxena, F.A. Williams, Proc. Combust. Inst. 31, 1149–1156 (2007)

    Google Scholar 

  10. J. Warnatz, Pure Appl. Chem. 72, 2101–2110 (2000)

    Google Scholar 

  11. H. Bongers, J.A. Van Oijen, L.P.H. De Goey, Proc. Combust. Inst. 29, 1371–1378 (2002)

    Google Scholar 

  12. R.P. Lindstedt, M.P. Meyer, Proc. Combust. Inst. 29, 1395–1402 (2002)

    Google Scholar 

  13. S. Yalamanchili, W.A. Sirignano, R. Seiser, K. Seshadri, Combust. Flame 142, 258–265 (2005)

    Google Scholar 

  14. J. Li, A. Kazakov, M. Chaos, F.L. Dryer, 5th US Combustion Meeting (2007)

  15. O. Röhl, N. Peters, Proceedings of the European Combust, Meeting (2009)

  16. N.P. Komninos, C.D. Rakopoulos, Open Renew. Energ. J. 4, 47–59 (2011)

    Google Scholar 

  17. N.M. Marinov, Int. J. Chem. Kinet. 31, 183–220 (1999)

    Google Scholar 

  18. J. Li, A. Kazakov, F.L. Dryer, J. Phys. Chem. A 108, 7671–7680 (2004)

    Google Scholar 

  19. R. Seiser, S. Humer, K. Seshadri, E. Pucher, Proc. Combust. Inst. 31, 1173–1180 (2007)

    Google Scholar 

  20. S.R. Turns, An Introduction to Combustion: Concepts and Applications, 2nd edn. (McGraw-Hill, Singapore, 2000), pp. 148–177

    Google Scholar 

  21. N. Peters, in Dynamics of Reactive Systems, Part I: Flames. Systematic reduction of flame kinetics: principles and details (Progress in Astronautics and Aeronautics, American Institute of Astronautics and Aeronautics, Monmouth Junction, 1988), pp. 67–86

  22. N.J. Glassmaker, Intrinsic low-dimensional manifold method for rational simplification of chemical kinetics. (1999) http://www.nd.edu/~powers/nick.glassmaker.pdf. Accessed on 13 July 2010.

  23. H. Pitsch, Combust. Flame 123, 358–374 (2000)

    Google Scholar 

  24. H. Pitsch, H. Steiner, Phys. Fluids 12, 2541–2554 (2000)

    Google Scholar 

  25. M.R.H. Sheikhi, T.G. Drozda, P. Givi, F.A. Jaberi, S.B. Pope, Proc. Combust. Inst. 30, 549–556 (2005)

    Google Scholar 

  26. K.K.J. Ranga Dinesh, A.M. Savill, K.M. Jenkins, M.P. Kirkpatrick, Comput. Fluids 39, 1685–1695 (2010)

    Google Scholar 

  27. C.J. Lawn, Prog. Energy, Combust. Sci. 35, 1–30 (2009)

    Google Scholar 

Download references

Acknowledgments

This research is being developed at the Federal University of Rio Grande do Sul—UFRGS. Andreis and Vaz thank the financial support from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES—Brazil, and Prof. De Bortoli gratefully acknowledges the financial support from the Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq—Brazil, under process 303007/2009-5

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. L. Andreis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreis, G.S.L., Vaz, F.A. & De Bortoli, A.L. Bioethanol combustion based on a reduced kinetic mechanism. J Math Chem 51, 1584–1598 (2013). https://doi.org/10.1007/s10910-013-0166-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-013-0166-3

Keywords

Mathematics Subject Classification

Navigation