Skip to main content
Log in

An Overview of the SPTpol Experiment

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In 2012 the South Pole Telescope (SPT) will begin a 625 deg2 survey to measure the polarization anisotropy of the cosmic microwave background (CMB). Observations of the CMB B-mode angular power spectrum will be used to search for the large angular scale signal induced by inflationary gravitational waves. Additionally, the B-mode spectrum will enable a measurement of the neutrino mass through the gravitational lensing of the CMB. The new 780 pixel polarization-sensitive camera is composed of two different detector architectures and will map the sky at two frequencies. At 150 GHz, the camera consists of arrays of corrugated feedhorn-coupled TES polarimeters fabricated at the National Institute of Standards and Technology (NIST). At 90 GHz, we use individually packaged dual-polarization absorber-coupled polarimeters developed at Argonne National Laboratory. Each 90 GHz pixel couples to the telescope through machined contoured feedhorns. The entire focal plane is read out using a digital frequency-domain multiplexer system. We discuss the design and goals of this experiment and provide a description of the detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Dodelson et al., arXiv:0902.3796 (2009)

  2. J. Lesgourgues, S. Pastor, Phys. Rep. 429, 307 (2006)

    Article  ADS  Google Scholar 

  3. J. Kovac et al., Nature 420, 772 (2002)

    Article  ADS  Google Scholar 

  4. C. Pryke et al., Astrophys. J. 692, 1247–1270 (2009)

    Article  ADS  Google Scholar 

  5. C.H. Chiang et al., Astrophys. J. 711, 1123–1140 (2010)

    Article  ADS  Google Scholar 

  6. QUIET Collaboration, arXiv:1012.3191 (2010)

  7. J.E. Carlstrom et al., Publ. Astron. Soc. Pac. 123, 568 (2011)

    Article  ADS  Google Scholar 

  8. K. Vanderlinde et al., Astrophys. J. 722, 1180 (2010)

    Article  ADS  Google Scholar 

  9. R. Williamson et al., Astrophys. J. 738, 139 (2011). arXiv:1101.1290

    Article  ADS  Google Scholar 

  10. R. Keisler et al., Astrophys. J. 743, 28 (2011). arXiv:1105.3182

    Article  ADS  Google Scholar 

  11. E. Shirokoff et al., Astrophys. J (in press) (2011). arXiv:1012.4788

  12. P.A. Ade, R. Pisano, G.C. Tucker, S. Weaver, Proc. SPIE 6275, 62750U (2006)

    Article  ADS  Google Scholar 

  13. M. Dobbs et al., IEEE Trans. Nucl. Sci. 55(l), 21–26 (2008)

    Article  ADS  Google Scholar 

  14. J. McMahon et al., AIP Conf. Proc. 1185, 490 (2009). doi:10.1063/1.3292386

    Article  ADS  Google Scholar 

  15. J. Britton et al., Proc. SPIE 7741, 77410T (2010)

    Article  Google Scholar 

  16. Granet et al., IEEE Trans. Antennas Propag. 52(3), 848–854 (2004)

    Article  ADS  Google Scholar 

  17. Zeng et al., IEEE Trans. Antennas Propag. 58(4), 1383–1387 (2010)

    Article  ADS  Google Scholar 

  18. Hubmayr et al., J. Low Temp. Phys. (2012) this issue

  19. Chang et al., J. Low Temp. Phys. (2012) this issue

  20. McMahon et al., AIP Conf. Proc. 1185, 511. doi:10.1063/1.329291

  21. Bleem et al., AIP Conf. Proc. 1185, 479 (2009). doi:10.1063/1.3292382

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The South Pole Telescope is supported by the National Science Foundation through grants ANT-0638937 and ANT-0130612. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation and the Gordon and Betty Moore Foundation. The McGill group acknowledges funding from the National Sciences and Engineering Research Council of Canada, the Quebec Fonds de recherche sur la nature et les technologies, and the Canadian Institute for Advanced Research. Work at NIST is supported by the NIST Innovations in Measurement Science program. The work at Argonne National Laboratory, including the use of facility at the Center for Nanoscale Materials (CNM), was supported by Office of Science and Office of Basic Energy Sciences of the U.S. Department of Energy, under Contract No. DEAC02-06CH11357. Technical support from Nanofabrication Group at the CNM, Argonne National Laboratory, under User Proposal #164 and #467, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bleem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleem, L., Ade, P., Aird, K. et al. An Overview of the SPTpol Experiment. J Low Temp Phys 167, 859–864 (2012). https://doi.org/10.1007/s10909-012-0505-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0505-y

Keywords

Navigation