Skip to main content
Log in

Low Temperature Thermal Conductivity of Ti6Al4V Alloy

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The CUORE detector, to be installed in 2010 at LNGS, is made of 988 TeO2 crystals to be cooled to 10 mK. It consists of a large cryogen-free cryostat cooled by five pulse tubes and one high-power specially designed dilution refrigerator (R. Ardito et al. in http://arxiv.org/abs/hep-ex/0501010, [2005]). The cryostat is ∼ 3 m high and has a diameter of ∼ 1.6 m. About 5 tons of lead shielding are to be cooled to below 1 K and a mass of 1.5 ton must be cooled to 10 mK.

Some tie-rods sustain the different parts of the experiment. One end of each rod is at low temperature (10 mK for the detector frame, 50 mK for the coldest radiation shield, 700 mK for the shield linked to the still) with the other end usually at room temperature. A thermalization of the rods at the temperature of the first stage of the pulse tubes will be realized. Hence the value of the thermal conductivity of the material up to room temperature is important. At the lowest temperatures, the thermal conductivity has great influence in establishing the thermal load on the dilution refrigerator. The thermal conductivity of the structural material candidates for such tie-rods is usually known down to 4.2 K. Here we present data of thermal conductivity for the Ti6Al4V alloy below its superconductive transition temperature (4.38 K). A comparison over the full temperature range of operation is also done with other materials, such as 316 stainless steel and Torlon, candidates for the realization of the tie-rods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Ardito et al., CUORE: a cryogenic underground observatory for rare events, http://arxiv.org/abs/hep-ex/0501010 (2005)

  2. M. Reytier, F. Kircher, B. Levesy, Adv. in Cryog. Eng.: Proc. of the Int. Cryog. Mat. Conf.—ICMC. AIP Conference Proceedings, vol. 614 (2002), p. 76

  3. E.D. Marquardt, J.P. Le, R. Radebaugh, in Cryogenic Material Properties Database, ed. by R.G. Ross Jr. Cryocoolers, vol. 11 (Springer, New York, 2002), p. 681

    Google Scholar 

  4. W.A. Bosch et al., in Proc. TEMPMEKO 2001, ed. by B. Fellmuth et al. (VDE Verlag, Berlin, 2001), p. 397

    Google Scholar 

  5. S. Schottl et al., J. Low Temp. Phys. 138, 941 (2005)

    Article  Google Scholar 

  6. O. Umezawa, K. Ishikawa, Cryogenics 32(10), 873 (1992)

    Article  Google Scholar 

  7. M. Barucci, E. Olivieri, E. Pasca, L. Risegari, G. Ventura, Cryogenics 45(4), 295 (2005)

    Article  ADS  Google Scholar 

  8. G. Ventura, G. Bianchini, E. Gottardi, I. Peroni, A. Peruzzi, Cryogenics 39(5), 481 (1999)

    Article  ADS  Google Scholar 

  9. G. Ventura, M. Barucci, E. Gottardi, I. Peroni, Cryogenics 40(7), 489 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Risegari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Risegari, L., Barucci, M., Lolli, L. et al. Low Temperature Thermal Conductivity of Ti6Al4V Alloy. J Low Temp Phys 151, 645–649 (2008). https://doi.org/10.1007/s10909-008-9726-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-008-9726-5

Keywords

PACS

Navigation