Skip to main content
Log in

Improvement of the Neutronic Performance of the PACER Fusion Concept Using Thorium Molten Salt with Reactor Grade Plutonium

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

In this study, the improvement of neutronic performance of a dual purpose modified PACER concept has been investigated. Flibe as the main constituent are fixed as 92% coolant. ThF4 is mixed with increased mole-fractions of RG-PuF4 starting by 0 mol % up to 1 mol %. TBR variations for all the investigated salts with respect to the RG-PuF4 contents are computed. Tritium self-sufficiency is provided with the ThF4 when the adding RG-PuF4 content is higher than 0.75%. The energy multiplication of the blanket is increased as 70% with adding RG-PuF4 contents to ThF4. High quality fissile isotope 233U are produced with increasing RG-PuF4. DPA and helium production increases with increased RG-PuF4 content in molten salt. Radiation damage with dpa <1.7 and He <3.3 ppm after a plant operation period of 30 years will be well below the damage limit values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C.J. Call, R.W. Moir, Nucl. Sci. Eng. 104, 364 (1990)

    Google Scholar 

  2. A. Szöke, R.W. Moir, Technol. Rev. 94, 20 (1991)

    Google Scholar 

  3. A. Szöke, R.W. Moir, Fusion Technol. 20, 1012 (1991)

    Google Scholar 

  4. R.W. Moir, Fusion Technol. 15, 1114 (1989)

    Google Scholar 

  5. Engineering with nuclear explosives, in Proceedings of the 3rd Plowshare Symposium, TID-7695 (U.S. Department of Energy/Office of Scientific and Technical Information, Oak Ridge, 1964)

  6. E. Teller, W. Talley, G. Higgins, Constructive uses of nuclear explosives (McGraw-Hill, New York, 1968)

    Google Scholar 

  7. H. W. Hubbard, Project PACER Final Report, RDA-TR-4100-003 (R&D Associates, 1974)

  8. W. Seifritz, Fusion 4, 22 (1980)

    Google Scholar 

  9. R.P. Hammond, Mech. Eng. 104, 34 (1982)

    MathSciNet  Google Scholar 

  10. V. David, Trans. Am. Nucl. Soc. 56, 127 (1988)

    Google Scholar 

  11. S. Şahin, H.M. Şahin, K. Yıldız, A. Acır, Kerntechnik 70, 233 (2005)

    Google Scholar 

  12. S. Ünalan, Fusion Eng. Des. 70, 233 (2004)

    Article  Google Scholar 

  13. S. Şahin, R.W. Moir, S. Ünalan, Fusion Technol. 26, 1311 (1994)

    Google Scholar 

  14. S. Şahin, s. Şahin, K. Yıldız, Fusion Eng. Des. 65, 643 (2003)

    Article  Google Scholar 

  15. S. Ünalan, S.O. Akansu, Arab. J. Sci. Eng. 29, 27 (2004)

    Google Scholar 

  16. A. Acır, M. Übeyli, J. Fusion Energ. 29, 113–118 (2010)

    Article  Google Scholar 

  17. L. M. Petrie, Scale system driver, NUREG/CR-0200, Revision 7, Volume III, Section M1, ORNL/NUREG/CSD-2/V3/R7, 19 May 2004 (Oak Ridge National Laboratory, Oak Ridge, 2004)

  18. N. M. Greene, L. M. Petrie, XSDRNPM: a one-dimensional discrete—ordinates code for transport analysis, NUREG/CR-0200, Revision 7, Volume 2, Section F3, ORNL/NUREG/CSD-2/V2/R7 (Oak Ridge National Laboratory, Oak Ridge, 2004)

  19. W. C. Jordan, S. M. Bowman, D. F. Hollenbach, Scale cross-section libraries, NUREG/CR-0200, Revision 7, Volume 3, Section M4, ORNL/NUREG/CSD-2/V3/R7 (Oak Ridge National Laboratory, Oak Ridge, 2004)

  20. N. F. Landers, L. M. Petrie, D. F. Hollenbach, CSAS, control module for enhanced criticality safety analysis sequences, NUREG/CR-0200, Revision 6, Volume 1, Section C4, ORNL/NUREG/CSD-2/V1/R7 (Oak Ridge National Laboratory, Oak Ridge, 2004)

  21. N. M. Greene, BONAMI, resonance self-shielding by the Bondarenko method, NUREG/CR-0200, Revision 6, Volume 2, Section F1, ORNL/NUREG/CSD-2/V2/R7 (Oak Ridge National Laboratory, Oak Ridge, 2004)

  22. N. M. Greene, L. M. Petrie, R. M. Westfall, NITAWL-III, scale system module for performing resonance shielding and working library production, NUREG/CR-0200, Revision 6, Volume 2, Section F2, ORNL/NUREG/CSD-2/V2/R7 (Oak Ridge National Laboratory, Oak Ridge, 2004)

  23. A. Blink, W. J. Hogam, J. Hovingh, E. R. Meier, J. H. Pitts, High-Yield Lithium-Injection Fusion Energy (HYLIFE) Reactor, UCRL-53559, ed. by K. L. Essary, K. E. Lewis (Lawrence Livermore National Laboratory, Livermore, 1985)

  24. M. Perlado, M. W. Guinan, K. Abe, Radiation Damage in Structural Materials, Energy from Inertial Fusion (International Atomic Energy Agency, 272, Vienna, 1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adem Acır.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acır, A. Improvement of the Neutronic Performance of the PACER Fusion Concept Using Thorium Molten Salt with Reactor Grade Plutonium. J Fusion Energ 32, 11–14 (2013). https://doi.org/10.1007/s10894-012-9518-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-012-9518-4

Keywords

Navigation