Skip to main content
Log in

Cardiolipin deficiency causes a dissociation of the b 6 c:caa 3 megacomplex in B. subtilis membranes

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The associations among respiratory complexes in energy-transducing membranes have been established. In fact, it is known that the Gram-negative bacteria Paracoccus denitrificans and Escherichia coli have respiratory supercomplexes in their membranes. These supercomplexes are important for channeling substrates between enzymes in a metabolic pathway, and the assembly of these supercomplexes depends on the protein subunits and membrane lipids, mainly cardiolipin, which is present in both the mitochondrial inner membrane and bacterial membranes. The Gram-positive bacterium Bacillus subtilis has a branched respiratory chain, in which some complexes generate proton motive force whereas others constitute an escape valve of excess reducing power. Some peculiarities of this respiratory chain are the following: a type II NADH dehydrogenase, a unique b 6 c complex that has a b 6 type cytochrome with a covalently bound heme, and a c-type heme attached to the third subunit, which is similar to subunit IV of the photosynthetic b 6 f complex. Cytochrome c oxygen reductase (caa 3 ) contains a c-type cytochrome on subunit I. We previously showed that the b 6 c and the caa 3 complexes form a supercomplex. Both the b 6 c and the caa 3 together with the quinol oxygen reductase aa 3 generate the proton motive force in B. subtilis. In order to seek proof that this supercomplex is important for bacterial growth in aerobic conditions we compared the b 6 c: caa 3 supercomplex from wild type membranes with membranes from two mutants lacking cardiolipin. Both mutant complexes were found to have similar activity and heme content as the wild type. Clear native electrophoresis showed that mutants lacking cardiolipin had b 6 c:caa 3 supercomplexes of lower mass or even individual complexes after membrane solubilization with digitonin. The use of dodecyl maltoside revealed a more evident difference between wild-type and mutant supercomplexes. Here we provide evidence showing that cardiolipin plays a role in the stability of the b 6 c:caa 3 supercomplex in B. subtilis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

NDH:

NADH:quinone oxidoreductase

SQR:

succinate:quinone reductase

Nar:

nitrate reductase

CNE:

clear native electrophoresis

DDM:

dodecyl β-D maltoside

TMBZ:

N,N,N′,N′-tetramethylbenzidine

OXPHOS:

oxidative phosphorylation

BNE:

blue native electrophoresis

GlpD:

glyceraldehyde 3-phosphate dehydrogenase

References

  • Acehan D, Malhotra A, Xu Y, et al. (2011) Cardiolipin affects the supramolecular organization of ATP synthase in mitochondria. Biophys J 100:2184–2192. doi:10.1016/j.bpj.2011.03.031

    Article  CAS  Google Scholar 

  • Althoff T, Mills DJ, Popot JL, Kühlbrandt W (2011) Arrangement of electron transport chain components in bovine mitochondrial supercomplex I III IV . EMBO J. 30:4652--64. doi:10.1038/emboj.2011.324

  • Arias-Cartin R, Grimaldi S, Pommier J, et al. (2011) Cardiolipin-based respiratory complex activation in bacteria. Proc Natl Acad Sci U S A 108:7781–7786. doi:10.1073/pnas.1010427108

    Article  CAS  Google Scholar 

  • Arias-Cartin R, Grimaldi S, Arnoux P, et al. (2012) Cardiolipin binding in bacterial respiratory complexes: structural and functional implications. Biochim Biophys Acta 1817:1937–1949. doi:10.1016/j.bbabio.2012.04.005

    Article  CAS  Google Scholar 

  • Arnarez C, Marrink SJ, Periole X (2013a) Identification of cardiolipin binding sites on cytochrome c oxidase at the entrance of proton channels. Sci Rep 3:1263. doi:10.1038/srep01263

    CAS  Google Scholar 

  • Arnarez C, Mazat J-P, Elezgaray J, et al. (2013b) Evidence for cardiolipin binding sites on the membrane-exposed surface of the cytochrome bc 1 . J Am Chem Soc 135:3112–3120. doi:10.1021/ja310577u

    Article  CAS  Google Scholar 

  • Azarkina N, Siletsky S, Borisov V, et al. (1999) A cytochrome bb'-type quinol oxidase in Bacillus subtilis strain 168. J Biol Chem 274:32810–32817

    Article  CAS  Google Scholar 

  • Bazán S, Mileykovskaya E, Mallampalli VK, Heacock P, Sparagna GC, Dowhan W (2013) Cardiolipin-dependent reconstitution of respiratory supercomplexes from purified Saccharomyces cerevisiae complexes III and IV. J Biol Chem 288:401–411. doi:10.1074/jbc.M112.425876

    Article  Google Scholar 

  • Bengtsson J, Rivolta C, Hederstedt L, Karamata D (1999) Bacillus subtilis contains two small c-type cytochromes with homologous heme domains but different types of membrane anchors. J Biol Chem 274:26179–26184

    Article  CAS  Google Scholar 

  • Bénit P1, Goncalves S, Philippe Dassa E, Brière JJ, Martin G, Rustin P (2006) Three spectrophotometric assays for the measurement of the five respiratory chain complexes in minuscule biological samples. Clin Chim Acta 374:81–86. doi:10.1016/j.cca.2006.05.034

    Article  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. doi:10.1139/o59-099

    Article  CAS  Google Scholar 

  • Camara-Artigas A, Brune D, Allen JP (2002) Interactions between lipids and bacterial reaction centers determined by protein crystallography. Proc Natl Acad Sci U S A 99:11055–11060. doi:10.1073/pnas.162368399

    Article  CAS  Google Scholar 

  • Corcelli A (2009) The cardiolipin analogues of archaea. BBA 1788:2101–2106. doi:10.1016/j.bbamem.2009.05.010

    Article  CAS  Google Scholar 

  • Corcelli A, Lobasso S, Palese LL, et al. (2007) Cardiolipin is associated with the terminal oxidase of an extremely halophilic archaeon. Biochem Biophys Res Commun 354:795–801. doi:10.1016/j.bbrc.2007.01.060

    Article  CAS  Google Scholar 

  • Couoh-Cardel SJ, Uribe-Carvajal S, Wilkens S, García-Trejo JJ (2010) Structure of dimeric F F -ATP synthase. J Biol Chem 285:36447--55. doi:10.1074/jbc.M110.144907

  • de Oca García Montes LYJ, Chagolla-López A, de la Vara González L, et al. (2012) The composition of the Bacillus subtilis aerobic respiratory chain supercomplexes. J Bioenerg Biomembr 44:473–486. doi:10.1007/s10863-012-9454-z

    Article  Google Scholar 

  • de Vrij W, Burg B, Konings WN (1987) Spectral and potentiometric analysis of cytochromes from Bacillus subtilis. Eur J Biochem 166:589–595. doi:10.1111/j.1432-1033.1987.tb13554.x

    Article  Google Scholar 

  • Deutsch EW1, Mendoza L, Shteynberg D, Farrah T, Lam H, Tasman N, Sun Z, Nilsson E, Pratt B, Prazen B, Eng JK, Martin DB, Nesvizhskii AI, Aebersold R (2010) A guided tour of the trans-proteomic pipeline. Proteomics 10(6):1150–1159. doi:10.1002/pmic.200900375

    Article  CAS  Google Scholar 

  • Ekiert R, Czapla M, Sarewicz M, Osyczka A (2014) Hybrid fusions show that inter-monomer electron transfer robustly supports cytochrome bc 1 function in vivo. Biochem Biophys Res Commun 451:270–275. doi:10.1016/j.bbrc.2014.07.117

    Article  CAS  Google Scholar 

  • Feng Y, Li W, Li J, et al. (2012) Structural insight into the type-II mitochondrial NADH dehydrogenases. Nature 491:478–482. doi:10.1038/nature11541

    Article  CAS  Google Scholar 

  • Fry M, Green DE (1981) Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chain. J Biol Chem 256:1874–1880

    CAS  Google Scholar 

  • Gitler C (1972) Use of ANS to detect phospholipids and apolar molecules in chromatograms. Anal Biochem 50:324–325

    Article  CAS  Google Scholar 

  • Guérout-Fleury AM, Shazand K, Frandsen N, Stragier P (1995) Antibiotic-resistance cassettes for Bacillus subtilis. Gene 167:335–336

    Article  Google Scholar 

  • Guiral M1, Prunetti L, Lignon S, Lebrun R, Moinier D, Giudici-Orticonit MT (2009) New insights into the respiratory chains of the chemolithoautotrophic and hyperthermophilic bacterium Aquifex aeolicus. J Proteome Res. (4):1717–1730. doi:10.1021/pr8007946

  • Haegerhaell C, Aasa R, Wachenfeldt Von C, Hederstedt L (1992) Two hemes in Bacillus subtilis succinate:menaquinone oxidoreductase (complex II). Biochemistry 31:7411–7421. doi:10.1021/bi00147a028

    Article  CAS  Google Scholar 

  • Hasan SS, Yamashita E, Ryan CM, et al. (2011) Conservation of lipid functions in cytochrome bc complexes. J Mol Biol 414:145–162. doi:10.1016/j.jmb.2011.09.023

    Article  CAS  Google Scholar 

  • Henning W, Vo L, Albanese J, Hill BC (1995) High-yield purification of cytochrome aa 3 and cytochrome caa 3 oxidases from Bacillus subtilis plasma membranes. Biochem J 309(Pt 1):279–283

    Article  CAS  Google Scholar 

  • Huang Y, Powers C, Madala SK, et al. (2015) Cardiac metabolic pathways affected in the mouse model of Barth syndrome. PLoS One 10:e0128561. doi:10.1371/journal.pone.0128561

    Article  Google Scholar 

  • Jormakka M, Törnroth S, Abramson J, Byrne B, Iwata S (2002) Purification and crystallization of the respiratory complex formate dehydrogenase-N from Escherichia coli. Acta Crystallogr D Biol Crystallogr. 58:160--2. PMID: 11752799

  • Kawai F, Shoda M, Harashima R, et al. (2004) Cardiolipin domains in Bacillus subtilis Marburg membranes. J Bacteriol 186:1475–1483. doi:10.1128/JB.186.5.1475-1483.2004

    Article  CAS  Google Scholar 

  • Kawai F, Hara H, Takamatsu H, et al. (2006) Cardiolipin enrichment in spore membranes and its involvement in germination of Bacillus subtilis Marburg. Genes Genet Syst 81:69–76

    Article  CAS  Google Scholar 

  • Kusaka J, Shuto S, Imai Y, Ishikawa K, Saito T, Natori K, Matsuoka S, Hara H, Matsumoto K (2016) Septal localization by membrane targeting sequences and a conserved sequence essential for activity at the COOH-terminus of Bacillus subtilis cardiolipin synthase. Res Microbiol 167:202--14. doi:10.1016/j.resmic.2015.11.004

  • Lauraeus M, Wikström M (1993) The terminal quinol oxidases of Bacillus subtilis have different energy conservation properties. J Biol Chem 268:11470–11473

    CAS  Google Scholar 

  • Lemma E, Schägger H, Kröger A (1993) The menaquinol oxidase of Bacillus subtilis W23. Arch Microbiol 159:574–578

    Article  CAS  Google Scholar 

  • Lemma E, Simon J, Schägger H, Kröger A (1995) Properties of the menaquinol oxidase (Qox) and of qox deletion mutants of Bacillus subtilis. Arch Microbiol 163:432–438. doi:10.1007/BF00272132

    Article  CAS  Google Scholar 

  • Lino B, Carrillo-Rayas MT, Chagolla A, González de la Vara LE (2006) Purification and characterization of a calcium-dependent protein kinase from beetroot plasma membranes. Planta 225:255–268. doi:10.1007/s00425-006-0343-8

    Article  CAS  Google Scholar 

  • Liu X, Taber HW (1998) Catabolite regulation of the Bacillus subtilis ctaBCDEF gene cluster. J Bacteriol 180:6154–6163

    CAS  Google Scholar 

  • Lobasso S, Palese LL, Angelini R, Corcelli A (2013) Relationship between cardiolipin metabolism and oxygen availability in Bacillus subtilis. FEBS Open Bio 3:151–155. doi:10.1016/j.fob.2013.02.002

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Magalon A, Arias-Cartin R, Walburger A (2012) Supramolecular organization in prokaryotic respiratory systems. Adv Microb Physiol 61:217–266. doi:10.1016/B978-0-12-394423-8.00006-8

    Article  CAS  Google Scholar 

  • Markwell MA, Haas SM, Bieber LL, Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210

    Article  CAS  Google Scholar 

  • Matsumoto K, Hara H, Fishov I, et al. (2015) The membrane: transertion as an organizing principle in membrane heterogeneity. Front Microbiol 6:572. doi:10.3389/fmicb.2015.00572

    Article  Google Scholar 

  • Melo AMP, Teixeira M (2016) Supramolecular organization of bacterial aerobic respiratory chains: from cells and back. Biochim Biophys Acta 1857:190–197. doi:10.1016/j.bbabio.2015.11.001

    Article  CAS  Google Scholar 

  • Melo A, Cirlos E, Teixeira M (2015) Unravelling new metabolic pathways: supramolecular Organization of Aerobic Bacteria Respiratory Chains. Redox Proteins in Supercomplexes and Signalosomes. CRC Press, In, pp. 217–238

    Google Scholar 

  • Mileykovskaya E, Dowhan W (2014) Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes. Chem Phys Lipids 179:42–48. doi:10.1016/j.chemphyslip.2013.10.012

    Article  CAS  Google Scholar 

  • Muchová K, Wilkinson AJ, Barák I (2011) Changes of lipid domains in Bacillus subtilis cells with disrupted cell wall peptidoglycan. FEMS Microbiol Lett 325:92–98. doi:10.1111/j.1574-6968.2011.02417.x

    Article  Google Scholar 

  • Musatov A, Robinson NC (2012) Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome c oxidase. Free Radic Res 46:1313–1326. doi:10.3109/10715762.2012.717273

    Article  CAS  Google Scholar 

  • Pfeiffer K, Gohil V, Stuart RA, et al. (2003) Cardiolipin stabilizes respiratory chain supercomplexes. J Biol Chem 278:52873–52880. doi:10.1074/jbc.M308366200

    Article  CAS  Google Scholar 

  • Renner LD, Weibel DB (2011) Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc Natl Acad Sci U S A 108:6264–6269. doi:10.1073/pnas.1015757108

    Article  CAS  Google Scholar 

  • Schägger H (2002) Respiratory chain supercomplexes of mitochondria and bacteria. Biochim Biophys Acta 1555:154–159

    Article  Google Scholar 

  • Schägger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22. doi:10.1038/nprot.2006.4

    Article  Google Scholar 

  • Schlame M, Ren M (2006) Barth syndrome, a human disorder of cardiolipin metabolism. FEBS Lett 580:5450–5455. doi:10.1016/j.febslet.2006.07.022

    Article  CAS  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi:10.1038/nmeth.2089

    Article  CAS  Google Scholar 

  • Schwall CT, Greenwood VL, Alder NN (2012) The stability and activity of respiratory complex II is cardiolipin-dependent. Biochim Biophys Acta 1817:1588–1596. doi:10.1016/j.bbabio.2012.04.015

    Article  CAS  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  CAS  Google Scholar 

  • Sousa PMF, Silva STN, Hood BL, et al. (2011) Supramolecular organizations in the aerobic respiratory chain of Escherichia coli. Biochimie 93:418–425. doi:10.1016/j.biochi.2010.10.014

    Article  CAS  Google Scholar 

  • Sousa PMF, Videira MAM, Bohn A, et al. (2012) The aerobic respiratory chain of Escherichia coli: from genes to supercomplexes. Microbiology (Reading, Engl) 158:2408–2418. doi:10.1099/mic.0.056531-0

    Article  CAS  Google Scholar 

  • Sousa PMF, Videira MAM, Melo AMP (2013a) The formate:oxygen oxidoreductase supercomplex of Escherichia coli aerobic respiratory chain. FEBS Lett 587:2559–2564. doi:10.1016/j.febslet.2013.06.031

    Article  CAS  Google Scholar 

  • Sousa PMF, Videira MAM, Santos FAS, et al. (2013b) The bc:caa3 supercomplexes from the gram positive bacterium Bacillus subtilis respiratory chain: a megacomplex organization? Arch Biochem Biophys 537:153–160. doi:10.1016/j.abb.2013.07.012

    Article  CAS  Google Scholar 

  • Takada H, Fukushima-Tanaka S, Morita M, Kasahara Y, Watanabe S, Chibazakura T, Hara H, Matsumoto K, Yoshikawa H (2014) An essential enzyme for phospholipid synthesis associates with the Bacillus subtilis divisome. Mol Microbiol 91:242--55. doi:10.1111/mmi.12457

  • Tropp BE (1997) Cardiolipin synthase from Escherichia coli. Biochim Biophys Acta 1348:192–200

    Article  CAS  Google Scholar 

  • Trumpower BL (2002) A concerted, alternating sites mechanism of ubiquinol oxidation by the dimeric cytochrome bc( 1 ) complex. Biochim Biophys Acta 1555:166–173

    Article  CAS  Google Scholar 

  • Vartak R, Porras CA-M, Bai Y (2013) Respiratory supercomplexes: structure, function and assembly. Protein Cell 4:582–590. doi:10.1007/s13238-013-3032-y

    Article  CAS  Google Scholar 

  • Wachenfeldt von C, Hederstedt L (1993) Physico-chemical characterisation of membrane-bound and water-soluble forms of Bacillus subtilis cytochrome c-550. Eur J Biochem 212:499–509

    Article  Google Scholar 

  • Wenz T, Hielscher R, Hellwig P, et al. (2009) Role of phospholipids in respiratory cytochrome bc( 1 ) complex catalysis and supercomplex formation. Biochim Biophys Acta 1787:609–616. doi:10.1016/j.bbabio.2009.02.012

    Article  CAS  Google Scholar 

  • Wittig I, Braun H-P, Schägger H (2006) Blue native PAGE. Nat Protoc 1:418–428. doi:10.1038/nprot.2006.62

    Article  CAS  Google Scholar 

  • Wittig I, Karas M, Schägger H (2007) High resolution clear native electrophoresis for in-gel functional assays and fluorescence studies of membrane protein complexes. Mol Cell Proteomics 6:1215–1225. doi:10.1074/mcp.M700076-MCP200

    Article  CAS  Google Scholar 

  • Wittig I, Beckhaus T, Wumaier Z, et al. (2010) Mass estimation of native proteins by blue native electrophoresis: principles and practical hints. Mol Cell Proteomics 9:2149–2161. doi:10.1074/mcp.M900526-MCP200

    Article  CAS  Google Scholar 

  • Yano N, Muramoto K, Mochizuki M, Shinzawa-Itoh K, Yamashita E, Yoshikawa S, Tsukihara T (2015) X-ray structure of cyanide-bound bovine heart cytochrome c oxidase in the fully oxidized state at 2.0 Å resolution. Acta Crystallogr F Struct Biol Commun 71:726--30. doi:10.1107/S2053230X15007025

  • Yu J, Le Brun NE (1998) Studies of the cytochrome subunits of menaquinone:Cytochromec reductase (bc complex) of Bacillus subtilis. J Biol Chem 273:8860–8866. doi:10.1074/jbc.273.15.8860

    Article  CAS  Google Scholar 

  • Yu J, Hederstedt L, Piggot PJ (1995) The cytochrome bc complex (menaquinone:cytochrome c reductase) in Bacillus subtilis has a nontraditional subunit organization. J Bacteriol 177:6751–6760

    CAS  Google Scholar 

  • Zhang M, Mileykovskaya E, Dowhan W (2002) Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane J Biol Chem 277:43553–43556. doi:10.1074/jbc.C200551200

    CAS  Google Scholar 

  • Zhang M, Mileykovskaya E, Dowhan W (2005) Cardiolipin is essential for organization of complexes III and IV into a supercomplex in intact yeast mitochondria. J Biol Chem 280:29403–29408. doi:10.1074/jbc.M504955200

    Article  CAS  Google Scholar 

  • Zhang X, Hiser C, Tamot B, et al. (2011a) Combined genetic and metabolic manipulation of lipids in Rhodobacter sphaeroides reveals non-phospholipid substitutions in fully active cytochrome c oxidase. Biochemistry 50:3891–3902. doi:10.1021/bi1017039

    Article  CAS  Google Scholar 

  • Zhang X, Tamot B, Hiser C, et al. (2011b) Cardiolipin deficiency in Rhodobacter sphaeroides alters the lipid profile of membranes and of crystallized cytochrome oxidase, but structure and function are maintained. Biochemistry 50:3879–3890. doi:10.1021/bi101702c

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Biologist Bertha Pérez Gómez for the technical assistance provided in preparing the CNE-2D-SDS PAGE and Ma. Bárbara Lino Alfaro for the technical work provided in preparing the samples for mass spectrometry. The authors also thank M. S. Lourdes Elizabeth Leyva for the technical assistance and M. S. Ana Paula García García for reading the manuscript. This work was supported by the following grants: DGAPA PAPIIT IN221611, IN215915 and CONACYT 102102. The manuscript is dedicated to the memory of Dr. Bernard L. Trumpower.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Berta Gutiérrez-Cirlos.

Electronic supplementary material

ESM 1

(DOCX 9133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García Montes de Oca, L.Y.J., Cabellos Avelar, T., Picón Garrido, G.I. et al. Cardiolipin deficiency causes a dissociation of the b 6 c:caa 3 megacomplex in B. subtilis membranes. J Bioenerg Biomembr 48, 451–467 (2016). https://doi.org/10.1007/s10863-016-9671-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-016-9671-y

Keywords

Navigation