Skip to main content
Log in

In vitro degradation and drug release of a biodegradable tissue adhesive based on functionalized 1,2-ethylene glycol bis(dilactic acid) and chitosan

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Biodegradability and adhesive-associated local drug release are important aspects of research in tissue adhesive development. Therefore, this study focuses on investigating the in vitro degradation and drug release of a tissue adhesive consisting of hexamethylene diisocyanate functionalized 1,2-ethylene glycol bis(dilactic acid) and chitosan chloride. To prevent infections, ciprofloxacin hydrochloride (CPX·HCl) was incorporated into the adhesive. The influence of CPX·HCl on the adhesive reaction and adhesive strength was analyzed by FTIR-ATR-spectroscopy and tensile tests. The CPX·HCl release was investigated by HPLC. The degradation-induced changes at 37 °C were evaluated by gravimetric/morphological analyzes and micro-computer tomography. The antibiotic potential of the CPX·HCl loaded adhesive was determined by agar diffusion tests. The degradation tests revealed a mass loss of about 78 % after 52 weeks. The adhesive reaction velocity and tensile strength were not influenced by CPX·HCl. Using a 2 mg/g CPX·HCl loaded adhesive an inhibition of all tested bacteria was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ryou M, Thompson Ch. Tissue adhesives: a review. Tech Gastrointest Endosc. 2006;8(1):33–7.

    Article  Google Scholar 

  2. Seewald S, Sriram PV, Naga M, Fennerty MB, Boyer J, Oberti F, Soehendra N. Cyanoacrylate glue in gastric variceal bleeding. Endoscopy. 2002;34(11):926–32.

    Article  CAS  Google Scholar 

  3. Chivers RA, Wolowacz RG. The strength of adhesive-bonded tissue joints. Int J Adhes. 1997;17:127–32.

    Article  CAS  Google Scholar 

  4. Leggat PA, Smith DR, Kedjarune U. Surgical applications of cyanoacrylate adhesives: a review of toxicity. ANZ J Surg. 2007;77(4):209–13.

    Article  Google Scholar 

  5. Tseng YC, Tabata Y, Hyon SH, Ikada Y. In vitro toxicity test of 2-cyanoacrylate polymers by cell culture method. J Biomed Mater Res. 1990;24(10):1355–67.

    Article  CAS  Google Scholar 

  6. Toriumi DM, Rasian WF, Friedman M, Tardy ME. Histotoxicity of cyanoacrylate tissue adhesives: a comparative study. Arch Otolaryngol Head Neck Surg. 1990;116(5):546–50.

    Article  CAS  Google Scholar 

  7. Papatheofonis FJ. Cytotoxicity of alkyl-2-cyanoacrylate adhesives. J Biomed Mater Res. 1989;23(6):661–8.

    Article  Google Scholar 

  8. Dunn CJ, Goa KL. Fibrin sealant: a review of its use in surgery and endoscopy. Drugs. 1999;58(5):863–86.

    Article  CAS  Google Scholar 

  9. Flahiff C, Feldman D, Saltz R, Huang S. Mechanical properties of fibrin adhesives for blood vessel anastomosis. J Biomed Mater Res. 1992;26(4):481–91.

    Article  CAS  Google Scholar 

  10. Sierra DH, Feldmann DS, Saltz R, Huang S. A method to determine shear adhesive strength of fibrin sealants. J Appl Biomater. 1992;3:147–51.

    Article  CAS  Google Scholar 

  11. Weber SC, Chapman MW. Adhesives in orthopaedic surgery. a review of the literature and in vitro bonding strengths of bone-bonding agents. Clin Orthop Relat Res. 1984;191:249–61.

    CAS  Google Scholar 

  12. Heiss C, Kraus R, Schluckebier D, Stiller AC, Wenisch S, Schnettler R. Bone adhesives in trauma and orthopedic surgery. Eur J Trauma Emerg Surg. 2006;32(2):141–8.

    Article  Google Scholar 

  13. Ferreira P, Silva AFM, Pinto MI, Gil MH. Development of a biodegradable bioadhesive containing urethane groups. J Mater Sci Mater Med. 2008;19(1):111–20.

    Article  CAS  Google Scholar 

  14. Ferreira P, Pereira R, Coelho JFJ, Silva AFM, Gil MH. Modification of the biopolymer castor oil with free isocyanate groups to be applied as bioadhesive. Int J Biol Macromol. 2007;40(2):144–52.

    Article  CAS  Google Scholar 

  15. Sheikh N, Mirzadeh H, Katbab AA, Salehian P, Daliri M, Amanpour S. Isocyanate-terminated urethane prepolymer as bioadhesive material: evaluation of bioadhesion and biocompatibility, in vitro and in vivo assays. J Biomater Sci Polymer Edn. 2001;12(7):707–19.

    Article  CAS  Google Scholar 

  16. Sung HW, Huang DM, Chang WH, Huang RN, Hsu JC. Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: in vitro study. J Biomed Mater Res. 1999;46(4):520–30.

    Article  CAS  Google Scholar 

  17. Chao HH, Torchiana DF. BioGlue: albumin/glutaraldehyde sealant in cardiac surgery. J Card Surg. 2003;18(6):500–3.

    Article  Google Scholar 

  18. Tatehata H, Mochizuki A, Ohkawa K, Yamada M, Yamamoto H. Tissue adhesive using synthetic model adhesive proteins inspired by the marine mussel. J Adhes Sci Technol. 2001;15:1003–13.

    Article  CAS  Google Scholar 

  19. Hwang DS, Gim Y, Yoo HJ, Cha HJ. Practical recombinant hybrid mussel bioadhesive fp-151. Biomaterials. 2007;28(24):3560–8.

    Article  CAS  Google Scholar 

  20. Schnabelrauch M, Vogt S, Larcher Y, Wilke I. Biodegradable polymer networks based on oligolactide macromers: synthesis, properties and biomedical applications. Biomol Eng. 2002;19(2–6):295–8.

    Article  CAS  Google Scholar 

  21. Vogt S, Larcher Y, Beer B, Wilke I, Schnabelrauch M. Fabrication of highly porous scaffold materials based on functionalized oligolactides and preliminary results on their use in bone tissue engineering. Eur Cell Mater. 2002;4:30–8.

    CAS  Google Scholar 

  22. Sternberg K, Rohm HW, Lurtz C, Wegmann J, Odermatt EK, Behrend D, Michalik D, Schmitz KP. Development of a biodegradable tissue adhesive based on functionalized 1,2-ethylene glycol bis(dilactic acid). I. J Biomed Mater Res B. 2010;94(2):318–26.

    Google Scholar 

  23. Ulubayram K, Aksu E, Gurhan SI, Serbetci K, Hasirci N. Cytotoxicity evaluation of gelatin sponges prepared with different cross-linking agents. J Biomater Sci Polym Ed. 2002;13(11):1203–19.

    Article  CAS  Google Scholar 

  24. Kim J, Kim IS, Cho TH, Lee KB, Hwang SJ, Tae G, Noh I, Lee SH, Park Y, Sun K. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials. 2007;28(10):1830–7.

    Article  CAS  Google Scholar 

  25. Bhaskara Rao S, Sharma CP. Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential. J Biomed Mater Res. 1997;34:21–8.

    Article  Google Scholar 

  26. Salgado AJ, Coutinho OP, Reis RL, Davies JE. In vivo response to starch-based scaffolds designed for bone tissue engineering applications. J Biomed Mater Res A. 2007;80(4):983–9.

    CAS  Google Scholar 

  27. Lim SM, Song DK, Oh SH, Lee-Yoon DS, Bae EH, Lee JH. In vitro und in vivo degradation behaviour of acetylated chitosan porous beads. J Biomater Sci Polym Ed. 2008;19(4):453–66.

    Article  CAS  Google Scholar 

  28. Rohm H, Lurtz C, Wegmann J, Odermatt E, Behrend D, Schmitz KP, Sternberg K. Development of a biodegradable tissue adhesive based on functionalized 1,2-ethylene glycol bis(dilactic acid). Part II. J Biomed Mater Res B. 2011;97(1):66–73.

    Google Scholar 

  29. Freier T, Koha HS, Kazaziana K, Shoichet MS. Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials. 2005;26:5872–8.

    Article  CAS  Google Scholar 

  30. Hankiewicz J, Swierczek E. Lysozyme in human body fluids. Clin Chim Acta. 1974;57:205–9.

    Article  CAS  Google Scholar 

  31. Vårum KM, Myhr MM, Hjerde RJ, Smidsrød O. In vitro degradation rates of partially N-acetylated chitosans in human serum. Carbohydr Res. 1997;299(1–2):99–101.

    Article  Google Scholar 

  32. Yu BG, Kwon IC, Kim YH, Han DK, Park KD, Han K, Jeong SY. Development of a local antibiotic delivery system using fibrin glue. J Control Release. 1996;39:65–70.

    Article  CAS  Google Scholar 

  33. Zilch H, Labiris E. The sustained release of cefotaxime from a fibrin-cefotaxime compound in treatment of osteitis. Arch Orthop Trauma Surg. 1986;106:36–41.

    Article  CAS  Google Scholar 

  34. Kram HB, Bansal M, Timberlake O, Shoemaker WC. Antibacterial effects of fibrin glue-antibiotic mixtures. J Surg Res. 1991;50:175–8.

    Article  CAS  Google Scholar 

  35. Tompson DF, Davis TW. The addition of antibiotics to fibrin glue. South Med J. 1997;90(7):681–4.

    Article  Google Scholar 

  36. Heiss C, Hahn N, Wenisch S, Alt V, Pokinskyj P, Horas U, Kilian O, Schnettler R. The tissue response to an alkylene bis(dilactoyl)-methacrylate bone adhesive. Biomaterials. 2005;26(12):1389–96.

    Article  CAS  Google Scholar 

  37. International Organization of Standardization (ISO). 15814: Implants for surgery-copolymers and blends based on polylactide—in vitro degradation testing. 1999.

  38. Heiss C, Hahn N, Pokinskyj P, Wenisch S, Stahl JP, Meyer CH, Schnettler R. Properties and degradation of a new bioresorbable bone glue. Biomed Technik. 2004;49:163–9.

    Article  CAS  Google Scholar 

  39. Brouwer J, van Leeuwen-Herberts T, Otting-van de Ruit M. Determination of lysozyme in serum, urine, cerebrospinal fluid and feces by enzyme immunoassay. Clin Chim Acta. 1984;142:21–30.

    Article  CAS  Google Scholar 

  40. Porstmann B, Jung K, Schmechta H, Evers U, Pergande M, Porstmann T, Kramm HJ, Krause H. Measurement of lysozyme in human body fluids: comparison of various enzyme immunoassay techniques and their diagnostic application. Clin Biochem. 1989;22:349–55.

    Article  CAS  Google Scholar 

  41. Tomihata K, Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials. 1997;16:567–75.

    Article  Google Scholar 

  42. Onishi H, Machida Y. Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials. 1999;20:175–82.

    Article  CAS  Google Scholar 

  43. Aktories K, Förstermann U, Hofmann FB, Starke K. Allgemeine und spezielle pharmakologie und toxikologie. 10th ed. München: Elsevier GmbH, Urban & Fischer Verlag; 2009. p. 1076.

    Google Scholar 

  44. Radosevich M, Goubran HI, Burnouf T. Fibrin sealant: scientific rationale, production methods, properties, and current clinical use. Vox Sang. 1997;72(3):133–43.

    Article  CAS  Google Scholar 

  45. Mintz PD, Mayers L, Avery N, Flanagan HL, Burks SG, Spotnitz WD. Fibrin sealant: clinical use and the development of the University of Virginia Tissue Adhesive Center. Ann Clin Lab Sci. 2001;31(1):108–18.

    CAS  Google Scholar 

  46. Lee M-GM, Jones D. Applications of fibrin sealant in surgery. Surg Innov. 2005;12:203–13.

    Article  Google Scholar 

  47. Muzzarelli RAA, Mattioli-Belmonte M, Miliani M, Muzzarelli C, Gabbanelli F, Biagini G. In vivo and in vitro biodegradation of oxychitin–chitosan and oxypullulan–chitosan complexes. Carbohydr Polym. 2002;48(1):15–21.

    Article  CAS  Google Scholar 

  48. Gorzelanny C, Pöppelmann B, Pappelbaum K, Moerschbacher BM, Schneider SW. Human macrophage activation triggered by chitotriosidase-mediated chitin and chitosan degradation. Biomaterials. 2010;31(33):8556–63.

    Article  CAS  Google Scholar 

  49. Mori T, Murakami M, Okumura M, Kadosawa T, Uede T, Fujinaga T. Mechanism of macrophage activation by chitin derivatives. J Vet Med Sci. 2005;67(1):51–6.

    Article  CAS  Google Scholar 

  50. Spicer PP, Mikos AG. Fibrin glue as a drug delivery system. J Control Release. 2010;148(1):49–55.

    Article  CAS  Google Scholar 

  51. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of IICs and zone diameters—Version 1.3. 2011.

Download references

Acknowledgments

The authors would like to thank Martina Schröder and Jaqueline Bohm for their expert technical assistance as well as Dr. Thomas Reske for his helpful support in chromatographic analyzes. Furthermore, Prof. Dr. Gerhard Hennighausen and Thilo Storm are gratefully acknowledged for their helpful notes and suggestions. The work was financially supported by Bundesministerium für Bildung und Forschung (BMBF) within the REMEDIS project “Höhere Lebensqualität durch neuartige Mikroimplantate” (FKZ: 03IS2081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Sternberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lurtz, C., Voss, K., Hahn, V. et al. In vitro degradation and drug release of a biodegradable tissue adhesive based on functionalized 1,2-ethylene glycol bis(dilactic acid) and chitosan. J Mater Sci: Mater Med 24, 667–678 (2013). https://doi.org/10.1007/s10856-012-4826-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4826-9

Keywords

Navigation