Skip to main content
Log in

Topographical analysis of the femoral components of ex vivo total knee replacements

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

With greater numbers of primary knee replacements now performed in younger patients there is a demand for improved performance. Surface roughness of the femoral component has been proposed as a causative mechanism for premature prosthesis failure. Nineteen retrieved total knee replacements were analysed using a non-contacting profilometer to measure the femoral component surface roughness. The Hood technique was used to analyse the wear and surface damage of the matching ultra-high molecular weight polyethylene (UHMWPE) tibial components. All femoral components were shown to be up to 11× rougher after their time in vivo while 95 % showed a change in skewness, further indicating wear. This increase in roughness occurred relatively soon after implantation (within 1 year) and remained unchanged thereafter. Mostly, this roughness was more apparent on the lateral condyle than the medial. This increased femoral surface roughness likely led to damage of the UHMWPE tibial component and increased Hood scores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. National Joint Registry for England and Wales. 8th Annual Report. 2011.

  2. Losina E, Thornhill TS, Rome BN, Wright J, Katz JN. The dramatic increase in total knee replacement utilization rates in the United States cannot be fully explained by growth in population size and the obesity epidemic. J Bone Joint surg Am. 2012;94(3):201–7.

    Article  Google Scholar 

  3. Losina E, Katz JN. Total knee arthroplasty on the rise in younger patients: are we sure that past performance will guarantee future success? Arthritis Rheum. 2012;64(2):339–41. doi:10.1002/art.33371.

    Article  Google Scholar 

  4. Kurtz S, Mowat F, Ong K, Chan N, Lau E, Halpern M. Prevalence of primary and revision total hip and knee arthroplasty in the United States from 1990 through 2002. J Bone Joint Surg Am. 2005;87A(7):1487–97. doi:10.2106/jbjs.d.02441.

    Article  Google Scholar 

  5. Lavernia C, Lee DJ, Hernandez VH. The increasing financial burden of knee revision surgery in the United States. Clin Orthop Relat Res. 2006;446:221–6. doi:10.1097/01.blo.0000214424.67453.9a.

    Article  Google Scholar 

  6. Gioe TJ, Killeen KK, Grimm K, Mehle S, Scheltema K. Why are total knee replacements revised? Analysis of early revision in a community knee implant registry. Clin Orthop Relat Res. 2004;428:100–6.

    Article  Google Scholar 

  7. Siddique MS, Rao MC, Deehan DJ, Pinder IM. Role of abrasion of the femoral component in revision knee arthroplasty. J Bone Joint Surg Br. 2003;85B(3):393–8. doi:10.1302/0301-620x.85b3.13041.

    Article  Google Scholar 

  8. Que L, Topoleski LDT, Parks NL. Surface roughness of retrieved CoCrMo alloy femoral components from PCA artificial total knee joints. J Biomed Mater Res. 2000;53(1):111–8. doi:10.1002/(sici)1097-4636(2000)53:1<111:aid-jbm15>3.0.co;2-y.

    Article  CAS  Google Scholar 

  9. Lakdawala A, Todo S, Scott G. The significance of surface changes on retrieved femoral components after total knee replacement. J Bone Joint Surg Br. 2005;87B(6):796–9. doi:10.1302/0301-620x.87b6.15776.

    Google Scholar 

  10. Cho CH, Murakami T, Sawae Y. Influence of microscopic surface asperities on the wear of ultra-high molecular weight polyethylene in a knee prosthesis. Proc Inst Mech Eng Part H J Eng Med. 2010;224H(4):515–29 doi:10.1243/09544119jeim690.

  11. Burnell CDC, Brandt JM, Petrak MJ, Bourne RB. Posterior condyle surface damage on retrieved femoral knee components. J Arthroplast. 2011;26(8):1460–7. doi:10.1016/j.arth.2011.03.011.

    Article  Google Scholar 

  12. Ohlsson R, Wihlborg A, Westberg H. The accuracy of fast 3D topography measurements. Int J Mach Tools Manuf. 2001;41(13–14):1899–907. doi:10.1016/s0890-6955(01)00054-2.

    Article  Google Scholar 

  13. Blunt L, Jiang XQ. Three dimensional measurement of the surface topography of ceramic and metallic orthopaedic joint prostheses. J Mater Sci Mater Med. 2000;11(4):235–46.

    Article  CAS  Google Scholar 

  14. Hood RW, Wright TM, Burstein AH. Retrieval analysis of total knee prostheses: a method and its application to 48 total condylar prostheses. J Biomed Mater Res. 1983;17(5):829–42. doi:10.1002/jbm.820170510.

    Article  CAS  Google Scholar 

  15. Kurtz SM. The UHMWPE biomaterials handbook: ultra-high molecular weight polyethylene in total joint replacement and medical devices, vol. 2. Burlington: Academy Press; 2009.

    Google Scholar 

  16. Dowson D, Taheri S, Wallbridge NC. The role of counterface imperfections in the wear of polyethylene. Wear. 1987;119(3):277–93. doi:10.1016/0043-1648(87)90036-6.

    Article  Google Scholar 

  17. Fisher J, Firkins P, Reeves EA, Hailey JL, Isaac GH. The influence of scratches to metallic counterfaces on the wear of ultra-high molecular weight polyethylene. Proc Inst Mech Eng Part H J Eng Med. 1995;209(4):263–4. doi:10.1243/pime_proc_1995_209_353_02.

    Article  CAS  Google Scholar 

  18. Bowsher JG, Shelton JC. Hip simulator study of the influence of patient activity level on the wear of crosslinked polyethylene under smooth and roughened femoral conditions. Wear. 2001;250:167–79. doi:10.1016/s0043-1648(01)00619-6.

    Article  Google Scholar 

  19. Muratoglu OK, Burroughs BR, Bragdon CR, Christensen S, Lozynsky A, Harris WH. Knee simulator wear of polyethylene tibias articulating against explanted rough femoral components. Clin Orthop Relat Res. 2004;428:108–13. doi:10.1097/01.blo.0000143801.41885.8b.

    Article  Google Scholar 

  20. DesJardins JD, Burnikel B, LaBerge M. UHMWPE wear against roughened oxidized zirconium and CoCr femoral knee components during force-controlled simulation. Wear. 2008;264(3–4):245–56. doi:10.1016/j.wear.2007.03.020.

    Article  CAS  Google Scholar 

  21. Collier JP, Sperling DK, Currier JH, Sutula LC, Saum KA, Mayor MB. Impact of gamma sterilization on clinical performance of polyethylene in the knee. J Arthroplast. 1996;11(4):377–89. doi:10.1016/s0883-5403(96)80026-x.

    Article  CAS  Google Scholar 

  22. Kennedy FE, Currier JH, Plumet S, Duda JL, Gestwick DP, Collier JP, et al. Contact fatigue failure of ultra-high molecular weight polyethylene bearing components of knee prostheses. J Tribol Trans ASME. 2000;122(1):332–9. doi:10.1115/1.555364.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The funding for this work was provided by a Knowledge Transfer Account (KTA). This KTA came from an Engineering and Physical Sciences Research Council (EPSRC) award given to Newcastle and Durham Universities. None of the authors hold any professional or financial affiliations that may be perceived to have biased the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan C. Scholes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholes, S.C., Kennard, E., Gangadharan, R. et al. Topographical analysis of the femoral components of ex vivo total knee replacements. J Mater Sci: Mater Med 24, 547–554 (2013). https://doi.org/10.1007/s10856-012-4815-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4815-z

Keywords

Navigation