Skip to main content
Log in

Enhancement of nerve regeneration along a chitosan conduit combined with bone marrow mesenchymal stem cells

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Many studies have been dedicated to the development of scaffolds for improving post-traumatic nerve regeneration with different biomaterials. Nerve autografting is the most common surgical procedure currently used to repair nerve defects as a gold standard. To address the disadvantages of limited availability of donor nerves and donor site morbidity, we have fabricated chitosan conduits and seeded them combined with bone marrow mesenchymal stem cells (BMSCs) as an alternative. The conduits were tested for efficacy in bridging the critical gap (8 mm) in sciatic nerves of adult rats, which including sciatic nerve function index (SFI), ethology observation, histologic detection, immunohistochemistry detection. The BMSCs were tested for survival rate and differentiation by fluorescence labeling. Six weeks after operation, the SFI, average regenerated fiber density, and fiber diameter in nerves bridged with BMSCs were similar to those treated with autograft, but significantly higher than those bridged with chitosan conduits only (P < 0.05) because of the differentiation of BMSCs. Evidence is thus provided to support the effect of using multi-channel chitosan conduits seeded with BMSCs to treat critical defects in peripheral nerves. This provides the basis to pursue chitosan and BMSCs combination is an effective method to improve the nerve healing, which may be used as an alternative to the conventional nerve autografts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schlosshauer B, Dreesmann L, Schaller HE, Sinis N. Synthetic nerve guide implants in humans: a comprehensive survey. Neurosurgery. 2006;59:740–7.

    Article  Google Scholar 

  2. Schmidt CE, Leach JB. Neural tissue engineering: strategies for repair and regeneration. Annu Rev Biomed Eng. 2003;5:293–347.

    Article  CAS  Google Scholar 

  3. Rose NR, Burek CL. The interaction of basic science and population-based research: autoimmune thyroiditis as a case history. Am J Epidemiol. 1991;134:1073–8.

    CAS  Google Scholar 

  4. Belkas JS, Shoichet MS, Midha R. Peripheral nerve regeneration through guidance tubes. Neurol Res. 2004;26:151–60.

    Article  Google Scholar 

  5. Samii M, Carvalho GA, Nikkhah G, Penkert G. Surgical reconstruction of the musculocutaneous nerve in traumatic brachial plexus injuries. J Neurosurg. 1997;87:881–6.

    Article  CAS  Google Scholar 

  6. Lundborg G. Enhancing post-traumatic nerve regeneration. J Peripher Nerv Syst. 2002;7:139–40.

    Article  Google Scholar 

  7. Geuna S, Papalia I, Tos P. End-to-side (terminolateral) nerve regeneration: a challenge for neuroscientists coming from an intriguing nerve repair concept. Brain Res Rev. 2006;52:381–8.

    Article  Google Scholar 

  8. Hoke A. Mechanisms of disease: What factors limit the success of peripheral nerve regeneration in humans? Nat Clin Pract Neurol. 2006;2:448–54.

    Article  CAS  Google Scholar 

  9. Tanigawa J, Miyoshi N, Sakurai K. J Appl Polym Sci. 2008;110:608–15.

    Article  CAS  Google Scholar 

  10. Chalfoun CT, Wirth GA, Evans GR. Tissue engineered nerve constructs: Where do we stand? J Cell Mol Med. 2006;10:309–17.

    Article  CAS  Google Scholar 

  11. Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials. 2003;24:2339–49.

    Article  CAS  Google Scholar 

  12. Maorong J, Xiaoming Z, Yumin Y, Xiaosong G, Fei D. The promotion of peripheral nerve regeneration by chitooligosaccharides in the rat nerve crush injury model. Neurosci Lett. 2009;454:239–43.

    Article  Google Scholar 

  13. Siemionow M, Bozkurt M, Zor F. Regeneration and repair of peripheral nerves with different biomaterials: review. Microsurgery. 2010;30:574–88.

    Article  Google Scholar 

  14. Ciardelli G, Chiono V. Materials for peripheral nerve regeneration. Macromol Biosci. 2005;6:13–26.

    Article  Google Scholar 

  15. Amado S, Simoes MJ, Armada da Silva PA, Luís AL, Shirosaki Y, Lopes MA, Santos JD, Fregnan F, Gambarotta G, Raimondo S, Fornaro M, Veloso AP, Varejão AS, Maurício AC, Geuna S. Use of hybrid chitosan membranes and N1E-115 cells for promoting nerve regeneration in an axonotmesis rat model. Biomaterials. 2008;29:4409–19.

    Article  CAS  Google Scholar 

  16. Pountos I, Corscadden D, Emery P, Giannoudis PV. Mesenchymal stem cell tissue engineering: techniques for isolation, expansion and application. Injury. 2007;38:S23–33.

    Article  Google Scholar 

  17. Brehm M, Zeus T, Strauer BE. Stem cells—clinical application and perspectives. Herz. 2002;27:611–20.

    Article  Google Scholar 

  18. Zheng L, Cui HF. Use of chitosan conduit combined with bone marrow mesenchymal stem cells for promoting peripheral nerve regeneration. J Mater Sci Mater Med. 2010;21:1713–20.

    Article  CAS  Google Scholar 

  19. Bain JR, Mackinnon SE, Hunter DA. Functional evaluation of complete sciatic, peroneal, and posterior tibial nerve lesions in the rat. Plast Reconstr Surg. 1989;83:129–36.

    Article  CAS  Google Scholar 

  20. Ao Q, Fung CK, Tsui AY, Cai S, Zuo HC, Chan YS, Shum DK. The regeneration of transected sciatic nerves of adult rats using chitosan nerve conduits seeded with bone marrow stromal cell-derived Schwann cells. Biomaterials. 2011;32:787–96.

    Article  CAS  Google Scholar 

  21. Rosales-Cortés M, Peregrina-Sandoval J, Bañuelos-Pineda J, Sarabia-Estrada R, Gómez-Rodiles CC, Albarrán-Rodríguez E, Zaitseva GP, Pita-López ML. Immunological study of a chitosan prosthesis in the sciatic nerve regeneration of the axotomized dog. J Biomater Appl. 2003;18:15–23.

    Article  Google Scholar 

  22. Itoh S, Yamaguchi I, Suzuki M, Ichinose S, Takakuda K, Kobayashi H, Shinomiya K, Tanaka J. Hydroxyapatite-coated tendon chitosan tubes with adsorbed laminin peptides facilitate nerve regeneration in vivo. Brain Res. 2003;993:111–23.

    Article  CAS  Google Scholar 

  23. Ishikawa N, Suzuki Y, Ohta M, Cho H, Suzuki S, Dezawa M, Ide C. Peripheral nerve regeneration through the space formed by a chitosan gel sponge. J Biomed Mater Res A. 2007;83:33–40.

    CAS  Google Scholar 

  24. Patel M, Vandevord PJ, Matthew H, Wu B, DeSilva S, Wooley PH. Video-gait analysis of functional recovery of nerve repaired with chitosan nerve guides. Tissue Eng. 2006;12:3189–99.

    Article  CAS  Google Scholar 

  25. Wang A, Ao Q, Cao W, Yu M, He Q, Kong L, Zhang L, Gong Y, Zhang X. Porous chitosan tubular scaffolds with knitted outer wall and controllable inner structure for nerve tissue engineering. J Biomed Mater Res A. 2006;79:36–46.

    Google Scholar 

  26. Moore MJ, Friedman JA, Lewellyn EB, Mantila SM, Krych AJ, Ameenuddin S, Knight AM, Lu L, Currier BL, Spinner RJ, Marsh RW, Windebank AJ, Yaszemski MJ. Multiple-channel scaffolds to promote spinal cord axon regeneration. Biomaterials. 2006;27:419–29.

    Article  CAS  Google Scholar 

  27. Aijun W, Qiang A, Qing H, Xiaoming G, Kai G, Yandao G, Nanming Z, Xiufang Z. Neural stem cell affinity of chitosan and feasibility of chitosan-based porous conduits as scaffolds for nerve tissue engineering. Tsinghua Sci Technol. 2006;11:415–20.

    Article  Google Scholar 

  28. Wenling C, Duohui J, Jiamou L, Yandao G, Nanming Z, Xiufang Z. Effects of the degree of deacetylation on the physicochemical properties and Schwann cell affinity of chitosan films. J Biomater Appl. 2005;20:157–77.

    Article  Google Scholar 

  29. Hsu S-h, Whu SW, Tsai C-L, Wu Y-H, Chen H-W, Hsieh K-H. Chitosan as scaffold materials: effects of molecular weight and degree of deacetylation. J Polym Res. 2004;11:141–7.

    Google Scholar 

  30. Freier T, Koh HS, Kazazian K, Shoichet MS. Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials. 2005;26:5872–8.

    Article  CAS  Google Scholar 

  31. Zhao L, Lin Y, Ma J, Sun Y, Zeng S, Zhang X, Zuo M. Culture and neural differentiation of rat bone marrow mesenchymal stem cells in vitro. Cell Biol Int. 2007;31:916–23.

    Article  CAS  Google Scholar 

  32. Wislet-Gendebien S, Leprince P, Moonen G, Rogister B. Regulation of neural markers nestin and GFAP expression by cultivated bone marrow stromal cells. J Cell Sci. 2003;116:3295–302.

    Article  CAS  Google Scholar 

  33. Wislet-Gendebien S, Hans G, Leprince P, Rigo JM, Moonen G, Rogister B. Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells. 2005;23:392–402.

    Article  CAS  Google Scholar 

  34. Wang J, Ding F, Gu Y, Liu J, Gu X. Bone marrow mesenchymal stem cells promote cell proliferation and neurotrophic function of Schwann cells in vitro and in vivo. Brain Res. 2009;1262:7–15.

    Article  CAS  Google Scholar 

  35. Li J, Gong Y, Zhao N, Zhang X. Preparation of N-butyl chitosan and study of its physical and biological properties. J Appl Polym Sci. 2005;98:1016–24.

    Article  CAS  Google Scholar 

  36. Evans GR, Facs MD. Challenges to nerve regeneration. Semin Surg Oncol. 2000;19:312–8.

    Article  CAS  Google Scholar 

  37. Lu L, Chen X, Zhang CW, Yang WL, Wu YJ, Sun L, Bai LM, Gu XS, Ahmed S, Dawe GS, Xiao ZC. Morphological functional characterization of predifferentiation of myelinating glia-like cells from human bone marrow stromal cells through activation of F3/Notch signaling in mouse retina. Stem Cells. 2008;26:580–90.

    Article  CAS  Google Scholar 

  38. Lu J, Moochhala S, Moore XL, Ng KC, Tan MH, Lee LK, He B, Wong MC, Ling EA. Adult bone marrow cells differentiate into neural phenotypes improve functional recovery in rats following traumatic brain injury. Neurosci Lett. 2006;398:12–7.

    Article  CAS  Google Scholar 

  39. Yang Y, Chen X, Ding F, Zhang P, Liu J, Gu X. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues cells in vitro. Biomaterials. 2007;28:1643–52.

    Article  CAS  Google Scholar 

  40. Wang X, Hu W, Cao Y, Yao J, Wu J, Gu X. Dog sciatic nerve regeneration across a 30-mm defect bridged by a chitosan/PGA artificial nerve graft. Brain. 2005;128:1897–910.

    Article  Google Scholar 

  41. Cheng M, Cao W, Gao Y, Gong Y, Zhao N, Zhang X. Studies on nerve cell affinity of biodegradable modified chitosan films. J Biomater Sci Polym Ed. 2003;14:1155–67.

    Article  CAS  Google Scholar 

  42. Cheng MY, Deng JG, Yang F, Gong YD, Zhao NM, Zhang XF. Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions. Biomaterials. 2003;24:2871–80.

    Article  CAS  Google Scholar 

  43. Yuan Y, Zhang P, Yang Y, Wang X, Gu X. The interaction of Schwann cells with chitosan membranes and fibers in vitro. Biomaterials. 2004;25:4273–8.

    Article  CAS  Google Scholar 

  44. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA. 1999;96:10711–6.

    Article  CAS  Google Scholar 

  45. Ernst C, Christie BR. The putative neural stem cell marker, nestin, is expressed in heterogeneous cell types in the adult rat neocortex. Neuroscience. 2006;138:183–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Fei Cui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, L., Cui, HF. Enhancement of nerve regeneration along a chitosan conduit combined with bone marrow mesenchymal stem cells. J Mater Sci: Mater Med 23, 2291–2302 (2012). https://doi.org/10.1007/s10856-012-4694-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-012-4694-3

Keywords

Navigation