Skip to main content
Log in

Microstructural evolution and mechanical property in dual two-phase intermetallic alloys composed of geometrically close-packed Ni3 X (X: Al and V) containing Nb

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Dual two-phase intermetallic alloys composed of geometrically close-packed (GCP) structures of Ni3Al (L12) and Ni3V (D022) containing Nb were investigated in terms of microstructural evolution during low-temperature annealing (aging) and the related mechanical properties. The eutectoid region, i.e. the prior Al phase (Ni solid solution) is composed of the lamellar-like structure consisting of Ni3Al (L12) and Ni3V (D022) even at an early aging stage, and then coarsen with increasing aging time. The lamellar-like structure tend to align along \( \langle {\text{001}}\rangle \) direction and on {001} plane in the prior A1 phase (or the L12 phase). In a wide range of temperature, the dual two-phase intermetallic alloys showed high yield and tensile strength, and also reasonable tensile ductility, accompanied with ductile fracture mode. The observed mechanical properties were less sensitive to the microstructural evolution during low-temperature annealing (aging), meaning that the present dual two-phase intermetallic alloy is promising for a new type of high-temperature structural material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Van Vucht JHJ (1966) Less-Common Met 11:308

    Article  Google Scholar 

  2. Sinha AK (1969) Trans Met Soc AIME 245:911

    CAS  Google Scholar 

  3. Sinha AK (1972) Prog In Mater Sci Part 2 15:79

    CAS  Google Scholar 

  4. Tomihisa K, Kaneno Y, Takasugi T (2002) Intermetallics 10:247

    Article  CAS  Google Scholar 

  5. Ohira K, Kaneno Y, Takasugi T (2004) J Mater Sci 39:2295

    Article  CAS  Google Scholar 

  6. Tomihisa K, Kaneno Y, Takasugi T (2004) Intermetallics 12:317

    Article  CAS  Google Scholar 

  7. Ohira K, Kaneno Y, Takasugi T (2005) Mat Sci Eng A 399:332

    Article  Google Scholar 

  8. Fujita M, Kaneno Y, Takasugi T. Mat Sci Eng A (in press)

  9. Nunomura Y, Kaneno Y, Tsuda H, Takasugi T (2004) Intermetallics 12:389

    Article  CAS  Google Scholar 

  10. Nunomura Y, Kaneno Y, Tsuda H, Takasugi T (2006) Acta Mater 54:851

    Article  CAS  Google Scholar 

  11. Shibuya S, Kaneno Y, Yoshida M, Takasugi T (2006) Acta Mater 54:861

    Article  CAS  Google Scholar 

  12. Shibuya S, Kaneno Y, Tsuda H, Takasugi T (2007) Intermetallics 15:338

    Article  CAS  Google Scholar 

  13. Shibuya S, Kaneno Y, Yoshida M, Shishido T, Takasugi T (2007) Intermetallics 15:119

    Article  CAS  Google Scholar 

  14. Soga W, Kaneno Y, Takasugi T (2006) Intermetallics 14:170

    Article  CAS  Google Scholar 

  15. Soga W, Kaneno Y, Yoshida M, Takasugi T (2007) Mat Sci Eng A (in press)

  16. Pearson WB (1958) A handbook of lattice spacing and structures of metals and alloys, Pergamon press, p 378

  17. Villars P, Calvert LD (1986) Pearson’s handbook of crystallography data for intermetallic phases, vol. 3. ASM, Metals Park, p 2907

  18. Suzuki T, Mishima Y, Miura S (1989) ISIJ Int 29:1

    CAS  Google Scholar 

  19. Hagihara K, Nakano T, Umakoshi Y (2000) Acta Materialia 48:1469

    Article  CAS  Google Scholar 

  20. Hagihara K, Nakano T, Umakoshi Y (2003) Scripta Mater 48:577

    Article  CAS  Google Scholar 

  21. Hagihara K, Nakano T, Umakoshi Y (2003) Acta Mater 51:2623

    Article  CAS  Google Scholar 

  22. Tanner LE (1968) Phys Stat Sol 30:685

    Article  CAS  Google Scholar 

  23. Sihgh JB, Sundararaman M, Mukhopadhyay P, Prabhu N (2003) Scripta Mater 48:261

    Article  Google Scholar 

  24. Sihgh JB, Sundararaman M, Mukhopadhyay P , Prabhu N (2003) Intermetallics 11:83

    Article  Google Scholar 

  25. Suzuki A, Kojima H, Matsuo T, Takeyama M (2004) Intermetallics 12:969

    Article  CAS  Google Scholar 

  26. Bendersky LA, Biancaniello FS, Williams ME (1994) J Mater Res 9:3068

    Article  CAS  Google Scholar 

  27. Takeyama M, Kikuchi M (1998) Intermetallics 6:573

    Article  CAS  Google Scholar 

  28. Pope DP, Ezz SS (1984) Int Mater Rev 29:136

    CAS  Google Scholar 

  29. Stoloff NS (1989) Int Mater Rev 34:153

    CAS  Google Scholar 

  30. Yamaguchi M, Umakoshi Y (1990) Prog Mater Sci 34:1

    Article  CAS  Google Scholar 

  31. Hagihara K, Tanaka T, Nakano T, Umakoshi Y (2005) Acta Mater 53:5051

    Article  CAS  Google Scholar 

  32. von Mises R (1928) Z Ang Math Mech 8:161

    Article  Google Scholar 

  33. Hagihara K, Mori M, Umakoshi Y (2007) MRS Proc Publ 980:II05-20

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Grant-in-aid for Scientific Research (B) from the Ministry of Education, Culture, Sports and Technology. Also, a part of this work was carried out under the Visiting Researcher’s Program of Advanced Research Center of Metallic Glasses, Institute for Materials Research, Tohoku University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Takasugi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaneno, Y., Soga, W., Tsuda, H. et al. Microstructural evolution and mechanical property in dual two-phase intermetallic alloys composed of geometrically close-packed Ni3 X (X: Al and V) containing Nb. J Mater Sci 43, 748–758 (2008). https://doi.org/10.1007/s10853-007-2192-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2192-7

Keywords

Navigation