Skip to main content
Log in

High temperature plastic flow and grain boundary chemistry in oxide ceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High temperature plastic flow or grain boundary failure in oxide ceramics such as Al2O3 and tetragonal ZrO2 polycrystal (TZP) is sensitive to small levels of doping by various cations. For example, high temperature creep deformation in fine-grained, polycrystalline Al2O3 is highly suppressed by 0.1 mol% lanthanoid oxide or ZrO2-doping. An elongation to failure in superplastic TZP is improved by 0.2–3 mol% GeO2-doping. A high-resolution transmission electron microscopy (HRTEM) observation and an energy-dispersive X-ray spectroscopy (EDS) analysis revealed that the dopant cations tend to segregate along the grain boundaries in Al2O3 and TZP. The dopant effect is attributed to change in the grain boundary diffusivity due to the grain boundary segregation of the dopant cations. A molecular orbital calculation suggests that ionicity is one of the most important parameters to determine the high temperature flow stress, and probably, the grain boundary diffusivity in the oxide ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. H. CHOKSHI and T. G. LANGDON, Mater. Sci. Tech 7 (1991) 577.

    Google Scholar 

  2. J. WANG and R. RAJ, Acta Metal. Mater 39 (1991) 2909.

    Article  Google Scholar 

  3. S. LARTIGUE, L. PRIESTER, F. DUPAU, P. GRUFFEL and C. CARRY, Mater. Sci. Eng A164 (1993) 22.

    Google Scholar 

  4. H. YOSHIDA, K. OKADA, Y. IKUHARA and T. SAKUMA, Phil. Mag. Lett 76 (1997) 9.

    Article  Google Scholar 

  5. H. YOSHIDA, Y. IKUHARA and T. SAKUMA, J. Mater. Res 13 (1998) 2597.

    Google Scholar 

  6. J. CHO, C. M. WANG, H. M. CHAN, J. M. RICKMAN and M. P. HARMER, Acta Mater 47 (1999) 4197.

    Article  Google Scholar 

  7. P. THAVORNITI, Y. IKUHARA and T. SAKUMA, J. Am. Ceram. Soc 81 (1998) 2927.

    Google Scholar 

  8. M. JIMENEZ-MELEND, A. DOMINGUEZ-RODORIGUEZ and A. BRAVO-LEON, ibid 81 (1998) 2761.

    Google Scholar 

  9. J. MIMURADA, M. NAKANO, K. SASAKI, Y. IKUHARA and T. SAKUMA, ibid 84 (2001) 1817.

    Google Scholar 

  10. K. NAKATANI, H. NAGAYAMA, H. YOSHIDA, T. YAMAMOTO and T. SAKUMA, Scripta Mater 49 (2003) 791.

    Article  Google Scholar 

  11. Y. SAKKA, T. ISHII, T. S. SUZUKI, K. MORITA and K. HIRAGA, J. Euro. Ceram. Soc 24 (2004) 449.

    Article  Google Scholar 

  12. D. B. WILLIAMS and C. B. CARTER, in “Transmission Electron Microscopy, IV: Spectroscopy” (Plenum Press, NY, 1996) p. 599.

    Google Scholar 

  13. H. ADACHI, M. TSUKADA and C. SATOKO, J. Phys. Soc. Jpn 45 (1978) 875.

    Google Scholar 

  14. A. H. HEUER, N. J. TIGHE and R. M. CANNON, J. Am. Ceram. Soc 63 (1980) 53.

    Google Scholar 

  15. H. YOSHIDA, T. YAMAMOTO and T. SAKUMA, J. Euro. Ceram. Soc 23 (2003) 1795.

    Article  Google Scholar 

  16. P. WU and A. D. PELTON, J. Alloys Coump 179 (1992) 259.

    Article  Google Scholar 

  17. H. YOSHIDA, Y. IKUHARA and T. SAKUMA, Phil. Mag. Lett 79 (1999) 249.

    Article  Google Scholar 

  18. Idem, Acta Mater 50 (2002) 2955.

    Article  Google Scholar 

  19. R. M. CANNON and R. L. COBLE, in “Deformation of Ceramic Materials, ” edited by R. C. Bradt and R. E. Tressler (Plenum Press, 1974) p. 61.

  20. T. G. LANGDON and F. A. MOHAMED, J. Mater. Sci 13 (1978) 473.

    Article  Google Scholar 

  21. R. M. CANNON, W. H. RHODES and A. H. HEUER, J. Am. Ceram. Soc 63 (1980) 46.

    Google Scholar 

  22. W. SWIATNICKI, S. LARTIGUE-KORINEK and J. Y. LAVAL, Acta Metal. Mater 43 (1995) 795.

    Article  Google Scholar 

  23. K. NAKATANI, H. NAGAYAMA, H. YOSHIDA, T. YAMAMOTO and T. SAKUMA, Mater. Trans, 45 (2004) 2569.

    Google Scholar 

  24. W.-J. KIM, J. WOLFENSTINE and O. D. SHERBY, Acta Metal. Mater 39 (1991) 199.

    Article  Google Scholar 

  25. Y. MA and T. G. LANGDON, Mater. Sci. Eng A168 (1993) 225.

    Google Scholar 

  26. K. MORITA and K. HIRAGA, Acta Mater 50 (2002) 1075.

    Article  Google Scholar 

  27. H. YOSHIDA, Y. IKUHARA, T. SAKUMA, M. SAKURAI and E. MATSUBARA, Phil. Mag 84 (2004) 865.

    Article  Google Scholar 

  28. C. M. WANG, G. S. CARGILL, H. M. CHAN and M. P. HARMER, Acta Mater 48 (2000) 2579.

    Article  Google Scholar 

  29. Y. IKUHARA, P. THAVORNITI and T. SAKUMA, ibid 45 (1997) 5275.

    Article  Google Scholar 

  30. W. D. KINGERY, H. K. BOWEN and D. R. UHLMAN, in “Introduction to Ceramics” (John Wiley and Sons, NY, 1976) p. 41.

    Google Scholar 

  31. K. SASAKI, M. NAKANO, J. MIMURADA, Y. IKUHARA and T. SAKUMA, Mater. Sci. Forum 357–359 (2001) 129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yoshida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshida, H., Kuwabara, A., Yamamoto, T. et al. High temperature plastic flow and grain boundary chemistry in oxide ceramics. J Mater Sci 40, 3129–3135 (2005). https://doi.org/10.1007/s10853-005-2674-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-2674-4

Keywords

Navigation