Skip to main content
Log in

The functionalization of magnetite nanoparticles by hydroxyl substituted diazacrown ether, able to mimic natural siderophores, and investigation of their antimicrobial activity

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In this work we report of functionalization of magnetite nanoparticles by hydroxyl containing diazacrown ether—macroheterocycle (MC) that is able to mimic the properties of natural siderophores. The structure of synthesized crown ether was investigated by NMR, mass-, FTIR spectroscopy methods. The morphology of prepared MC@Fe3O4 nano-ensembles was analysed by scanning electron microscopy SEM, X-ray diffraction XRD analysis methods. The quantitative analysis of nanostructures was determined by atom absorbance spectroscopy as well as on the basis of Lambert–Beer law by UV spectroscopy method. It was found that the synthesized compounds were effective against gram-negative microorganisms Escherichia coli, Klebsiella spp. and gram-positive Staphylococcus aureus, having multi drug resistance properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Steed, J.W.,Atwood, J.L.: Supramolecular chemistry. 2nd edition, Chapter 1.7, pp. 27–38, Wiley, Hoboken (2009). ISBN: 978-0-470-51233-3

  2. Cragg, P.J.: Supramolecular chemistry: from biological inspiration to biomedical applications. Springer, Heidelberg (2010). doi: 10.1007/978-90-481-2582-1, e-ISBN: 9789048125821; 9789048125814

  3. Liu, L., Chen, S.: Theoretical study on cyclopeptides as the nanocarriers for Li+, Na+, K+ and F, Cl, Br. J. Nanomater. (2015). doi:10.1155/2015/276191

    Google Scholar 

  4. Jones, C.J., Thornback, J.R.: Medicinal applications of coordination chemistry, the royal society of chemistry. Chapter 4, pp. 203–205, (2007). ISBN: 978-0-85404-596-9

  5. Nabeshima, T.: Ag+ selective macrocycles containing soft ligating moieties and regulation of Ag+ binding. J. Incl. Phenom. Mol. Recognit. Chem. 32(2–3), 331–345 (1998). doi: 10.1023/A:1008079830979, Print ISSN: 0923-0750, Online ISSN: 1573-1111

  6. Lehn, J.M.: Supramolecular chemistry concepts and perspectives. VCH, Weinheim (1995). ISBN: 3-527-29311-6 (Softcover), ISBN: 3-527-29312-4 (Hardcover)

  7. Uskoković, V.: Nanostructured platforms for the sustained and local delivery of antibiotics in the treatment of osteomyelitis. Crit. Rev. Ther. Drug Carr. Syst. 32(1), 1–59 (2015)

    Article  Google Scholar 

  8. Dorniani, D., bin Hussein, M.Z., Kura, A.U., Fakurazi, S., Shaari, A.H., Ahmad, Z.: Preparation and characterization of 6-mercaptopurine-coated magnetite nanoparticles as a drug delivery system. Drug Des. Dev. Ther. 7, 1015–1026 (2013). doi:10.2147/DDDT.S43035

    Article  Google Scholar 

  9. Grumezescu, A.M., Gestal, M.C., Holban, A.M., Grumezescu, V., Vasile, B.Ş., Mogoantă, L., Iordache, F., Bleotu, C., Mogoşanu, G.D.: Biocompatible Fe3O4 increases the efficacy of amoxicillin delivery against gram-positive and gram-negative bacteria. Molecules 19, 5013–5027 (2014). doi:10.3390/molecules19045013

    Article  Google Scholar 

  10. Latorre, M., Rinaldi, C.: Applications of magnetic nanoparticles in medicine: magnetic fluid hyperthermia. Puerto Ric. Health Sci. J. 28(3), 227–238 (2009). ISSN: 0738-0658

  11. Massart, R.: Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans. Magn. 17, 1247–1248 (1981). doi:10.1109/TMAG.1981.1061188

    Article  Google Scholar 

  12. Mayrhofer, S., Domig, K.J., Mair, C., Zitz, U., Huys, G., Kneifel, W.: Comparison of broth microdilution, Etest, and agar disk diffusion methods for antimicrobial susceptibility testing of Lactobacillus acidophilus group members. Appl. Environ. Microbiol. 12, 3745–3748 (2008). doi:10.1128/AEM.02849-07

    Article  Google Scholar 

  13. Jorgensen, J.H., Lee, J.C.: Microdilution technique for antimicrobial susceptibility testing of Haemofilus influenza. Antimicrob. Agents Chemother. 8, 610–611 (1975). doi:10.1128/AAC.8.5.610

    Article  CAS  Google Scholar 

  14. Erriu, M., Genta, G., Tuveri, E., Orrù, G., Barbato, G., Levi, R.: Microtiter spectrophotometric biofilm production assay analyzed with metrological methods and uncertainty evaluation. Measurement 45, 1083–1088 (2012)

    Article  Google Scholar 

  15. Grumezescu, A.M., Cotar, A.I., Andronescu, E., Ficai, A., Ghitulica, C.D., Grumezescu, V., Vasile, B.S., Chifiriuc, M.C.: In vitro activity of the new water-dispersible Fe3O4 @usnic acid nanostructure against planktonic and sessile bacterial cells. J. Nanopart. Res. 15, 1766 (2013). doi:10.1007/s11051-013-1766-3

    Article  Google Scholar 

  16. Tempelaars, M.H., Rodrigues, S., Abee, T.: Comparative analysis of antimicrobial activities of valinomycin and cereulide, the Bacillus cereus emetic toxin. Appl Environ. Microbiol. 77(8), 2755–2762 (2011). doi:10.1128/AEM.02671-10

    Article  CAS  Google Scholar 

  17. Raymond, K.N.: Recognition and transport of natural and synthetic siderophores by microbes. Pure Appl. Chem. 66(4), 773–781 (1994). doi:10.1351/pac199466040773

    Article  CAS  Google Scholar 

  18. Periasamy, S., Joo, H.S., Duong, A.C., Bach, T.H.L., Tan, V.Y., Chatterjee, S.S., Cheung, G.Y., Otto, M.: How Staphylococcus aureus biofilms develop their characteristic structure. Proc. Natl. Acad. Sci. 109(4), 1281–1286 (2012). doi:10.1073/pnas.1115006109

    Article  CAS  Google Scholar 

  19. Hasanova, U.A., Ramazanov, M.A., Maharramov, A.M., Eyvazova, Q.M., Agamaliyev, Z.A., Parfyonova, Y.V., Hajiyeva, S.F., Hajiyeva, F.V., Veliyeva, S.B.: Nano-coupling of cephalosporin antibiotic with fe3o4 nanoparticles: trojan horse approach in antimicrobial chemotherapy of infections caused by Klebsiella spp.. J. Biomater. Nanobiotechnol. 6, 225–235 (2015). doi:10.4236/jbnb.2015.63021

    Article  Google Scholar 

  20. Hasanova, U., Ramazanov, M., Maharramov, A., Gakhramanova, Z., Hajiyeva, S., Eyvazova, Q., Vezirova, L., Hajiyevaa, F., Hasanova, M., Guliyeva, N.: Synthesis of macrocycle (MC)—mimics the properties of natural siderophores and preparation the nanostructures on the basis of MC and magnetite nanoparticles. CEt chem. Eng. Trans. 47, 109–114 (2016). doi:10.3303/CET1647019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahammadali Ahmad Ramazanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanova, U.A., Ramazanov, M.A., Maharramov, A.M. et al. The functionalization of magnetite nanoparticles by hydroxyl substituted diazacrown ether, able to mimic natural siderophores, and investigation of their antimicrobial activity. J Incl Phenom Macrocycl Chem 86, 19–25 (2016). https://doi.org/10.1007/s10847-016-0636-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-016-0636-x

Keywords

Navigation