Skip to main content
Log in

Real-time localization of an UAV using Kalman filter and a Wireless Sensor Network

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

A real-time localization algorithm is presented in this paper. The algorithm presented here uses an Extended Kalman Filter and is based on time difference of arrivals (TDOA) measurements of radio signal. The position and velocity of an Unmanned Aerial Vehicle (UAV) are successfully estimated in closed-loop in real-time in both hover and path following flights. Relatively small position errors obtained from the experiments, proves a good performance of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yim, J., Park, C., Joo, J., Jeong, S.: Extended Kalman Filter to wireless LAN based indoor positioning. Decis. Support Syst. (Elsevier) 45, 960–971 (2008)

    Article  Google Scholar 

  2. Yim, J., Jeong, S., Gwon, K., Joo, J.: Improvement of Kalman filters for WLAN based indoor tracking. Expert Syst. Appl. (Elsevier) 37(1), 426–433 (2010)

    Article  Google Scholar 

  3. Röhrig, C., Spieker, S.: Tracking of transport vehicles for warehouse management using a wireless sensor network. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 Sept 2008

  4. Röhrig, C., Muller, M.: Localization of sensor nodes in a wireless sensor network using the nanoLOC TRX transceiver. In: IEEE 69th Vehicular Technology Conference Spring, Barcelona, Spain, 26–29 April 2009

  5. Soriano, P., Caballero, F., Ollero, A.: RF-based particle filter localization for wildlife tracking by using an UAV. On: 40th International Symposium of Robotics, Barcelona, España (2009)

  6. Togersen, F.A., Skjoth, F., Munksgaard, L., Hojsgaard, S.: Wireless indoor tracking network based on Kalman filters with an applications to monitoring dairy cows. Comput. Electron. Agric. (Elsevier) 72, 119–126 (2010)

    Article  Google Scholar 

  7. Wendel, J., Meister, O., Schlaile, C., Trommer, G.F.: An integrated GPS/MEMS-IMU navigation system for an autonomous helicopter. Aerosp. Sci. Technol. 10, 527–533 (2006)

    Article  Google Scholar 

  8. Kim, J., Sukkarieh, S., Wishart, S.: Real-time navigation, guidance and control of an UAV using low-cost sensors. In: International Conference of Field and Service Robotics (FSR’03), Yamanashi, Japan, pp. 95–100 (2003)

  9. Bristeau, P.-J., Dorveaux, E., Vissière, D., Petit, N.: Hardware and software architecture for state estimation on an experimental low-cost small-scaled helicopter. Control Eng. Pract. 18, 733–746 (2010)

    Article  Google Scholar 

  10. Nanotron Technologies GmbH: Real Time Localization Systems (RTLS). White paper (2006)

  11. De Nardis, L., Di Benedetto, M.-G.: Overview of the IEEE 802.15.4/4a standards for low data rate wireless personal data networks. In: 4th Workshop on Positioning, Navigation and Communication, Hannover, Germany (2007)

  12. Ahn, H.-S., Hur, H., Choi, W.-S.: One-way ranging technique for CSS-based indoor localization. In: IEEE International Conference on Industrial Informatics, Daejeon, Korea (2008)

  13. Torrieri, D.J.: Statistical theory of passive location systems. IEEE Trans. Aerosp. Electron. Syst. AES-20(2), 183–198 (1984)

    Article  Google Scholar 

  14. Mao, G., Fidan, B., Anderson, B.D.O.: Wireless sensor network localization techniques. Comput. Networks 51(10), 2529–2553 (2007)

    Article  MATH  Google Scholar 

  15. Seco, F., Jiménez, A., Prieto, C., Roa, J., Koutsou, K.: A survey of mathematical methods for indoor localization. In: IEEE 6th International Symposium on Intelligent Signal Processing, Budapest, Hungry, 26–28 August 2009

  16. Dogancaya, K., Hashemi-Sakhtsari, A.: Target tracking by time difference of arrival using recursive smoothing. Signal Process. 85, 667–679 (2005)

    Article  Google Scholar 

  17. Huang, Y., Benesty, J., Elko, G.W., Mersereati, R.M.: Real-time passive source localization: a practical linear-correction least-squares approach. IEEE Trans. Speech Audio Process. 9(8), 943–956 (2001)

    Article  Google Scholar 

  18. Cheung, K.W., So, H.C., Ma, W.-K., Chan, Y.T.: A constrained least squares approach to mobile positioning: algorithms and optimality. EURASIP J. Appl. Signal Process. 2006, 1–23 (2006). Article ID 20858

    MATH  Google Scholar 

  19. Smith, J.O., Abel, J.S.: Closed-form least-squares location estimation from range-difference measurements. IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 1661–1669 (1987)

    Article  Google Scholar 

  20. Chan, Y.T., Ho, K.C.: A simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process. 42(8), 1905–1915 (1994)

    Article  MathSciNet  Google Scholar 

  21. Kalman, R.E.: A new approach to linear filtering prediction problems. ASME J. Basic Eng. 82, 34–45 (1960)

    Google Scholar 

  22. Becerra, V.M., Roberts, P.D., Griffiths, G.W.: Appliyingthe extended Kalman filter to systems described by nonlinear differential-algebraic equations. Control Eng. Pract. 9(3), 267–281 (2001)

    Article  Google Scholar 

  23. Julier, S.J., Ulhmann, J.K.: A new extension of the Kalman filter to nonlinear systems. In: Proceedings of the American Control Conference, pp. 1628–1630 (1995)

  24. Cho, H., Lee, C.W., Ban, S.J., Kim, S.W.: An enhanced positioning scheme for chirp spread spectrum ranging. Expert Syst. Appl. 37(8), 5728–5735 (2010)

    Article  Google Scholar 

  25. Röhrig, C., Spieker, S.: Localization of pallets in warehouses using wireless sensor networks. In: 16th Mediterranean Conference on Control and Automation, pp. 1833–1838 (2008)

  26. Bechler, D., Grimm, M., Kroschel, K.: Speaker tracking with a microphone array using Kalman filtering. Adv. Radio Sci. 1, 113–117(2003)

    Article  Google Scholar 

  27. Liang, Z., Ma, X., Dai, X.: Robust tracking of moving sound source using multiple model Kalman filter. Appl. Acoust. 69, 1350–1355 (2008)

    Article  Google Scholar 

  28. Nanotron Technologies GmbH: nanoLOC Development Kit User Guide. Technical Report NA-06-0230-0402-2.0 (2008)

  29. Bar-Shalom, Y., Li, X.-R., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation. Wiley, New York (2001)

    Book  Google Scholar 

  30. Grewal, M.S., Andrews, A.P.: Kalman Filtering: Theory and Practice using MATLAB. Wiley-Interscience Publication, New York (2001)

    Google Scholar 

  31. Sanahuja, G., Castillo, P., Sanchez, A.: Stabilization of n integrators in cascade with bounded input with experimental application to a VTOL laboratory system. Int. J. Robust Nonlinear Control 20(10), 1129–1139 (2010). doi:10.1002/rnc.1494

    MATH  MathSciNet  Google Scholar 

  32. Nanotron Technologies GmbH: nanoLOC TRX Transceiver (NA5TR1) User Guide. Datasheet NA-06-0230-0385-2.00 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José-Luis Rullán-Lara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rullán-Lara, JL., Salazar, S. & Lozano, R. Real-time localization of an UAV using Kalman filter and a Wireless Sensor Network. J Intell Robot Syst 65, 283–293 (2012). https://doi.org/10.1007/s10846-011-9599-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-011-9599-8

Keywords

Navigation