Skip to main content

Advertisement

Log in

Beta-amyloid induced changes in A-type K+ current can alter hippocampo-septal network dynamics

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) progression is usually associated with memory deficits and cognitive decline. A hallmark of AD is the accumulation of beta-amyloid (Aβ) peptide, which is known to affect the hippocampal pyramidal neurons in the early stage of AD. Previous studies have shown that Aβ can block A-type K+ currents in the hippocampal pyramidal neurons and enhance the neuronal excitability. However, the mechanisms underlying such changes and the effects of the hyper-excited pyramidal neurons on the hippocampo-septal network dynamics are still to be investigated. In this paper, Aβ-blocked A-type current is simulated, and the resulting neuronal and network dynamical changes are evaluated in terms of the theta band power. The simulation results demonstrate an initial slight but significant theta band power increase as the A-type current starts to decrease. However, the theta band power eventually decreases as the A-type current is further decreased. Our analysis demonstrates that Aβ blocked A-type currents can increase the pyramidal neuronal excitability by preventing the emergence of a steady state. The increased theta band power is due to more pyramidal neurons recruited into spiking mode during the peak of pyramidal theta oscillations. However, the decreased theta band power is caused by the spiking phase relationship between different neuronal populations, which is critical for theta oscillation, is violated by the hyper-excited pyramidal neurons. Our findings could provide potential implications on some AD symptoms, such as memory deficits and AD caused epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adeli, H., Ghosh-Dastidar, S., & Dadmehr, N. (2005). Alzheimer’s disease and models of computation: imaging, classification, and neural models. Journal of Alzheimer’s Disease, 7(3), 187–199. discussion 255–162.

    PubMed  Google Scholar 

  • Chen, C. (2005). beta-Amyloid increases dendritic Ca2+ influx by inhibiting the A-type K+ current in hippocampal CA1 pyramidal neurons. Biochemical and Biophysical Research Communications, 338(4), 1913–1919.

    Article  PubMed  CAS  Google Scholar 

  • Chi, S., & Qi, Z. (2006). Regulatory effect of sulphatides on BKCa channels. British Journal of Pharmacology, 149(8), 1031–1038.

    Article  PubMed  CAS  Google Scholar 

  • Cobb, S. R., Buhl, E. H., Halasy, K., Paulsen, O., & Somogyi, P. (1995). Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature, 378(6552), 75–78. doi:10.1038/378075a0.

    Article  PubMed  CAS  Google Scholar 

  • Colom, L. V. (2006). Septal networks: relevance to theta rhythm, epilepsy and Alzheimer’s disease. Journal of Neurochemistry, 96(3), 609–623. doi:10.1111/j.1471-4159.2005.03630.x.

    Article  PubMed  CAS  Google Scholar 

  • Colom, L. V., Castaneda, M. T., Banuelos, C., Puras, G., Garcia-Hernandez, A., Hernandez, S., et al. (2010). Medial septal beta-amyloid 1–40 injections alter septo-hippocampal anatomy and function. Neurobiology of Aging, 31(1), 46–57. doi:10.1016/j.neurobiolaging.2008.05.006.

    Article  PubMed  CAS  Google Scholar 

  • Csicsvari, J., Hirase, H., Czurko, A., Mamiya, A., & Buzsaki, G. (1999). Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving Rat. Journal of Neuroscience, 19(1), 274–287.

    PubMed  CAS  Google Scholar 

  • Cutsuridis, V., Cobb, S., & Graham, B. P. (2010). Encoding and retrieval in a model of the hippocampal CA1 microcircuit. Hippocampus, 20(3), 423–446. doi:10.1002/hipo.20661.

    PubMed  CAS  Google Scholar 

  • Freund, T. F., & Antal, M. (1988). GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature, 336(6195), 170–173. doi:10.1038/336170a0.

    Article  PubMed  CAS  Google Scholar 

  • Freund, T. F., & Buzsaki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6(4), 347–470. doi:10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I.

    Article  PubMed  CAS  Google Scholar 

  • Golomb, D., & Hansel, D. (2000). The number of synaptic inputs and the synchrony of large, sparse neuronal networks. Neural Computation, 12(5), 1095–1139.

    Article  PubMed  CAS  Google Scholar 

  • Good, T. A., Smith, D. O., & Murphy, R. M. (1996). Beta-amyloid peptide blocks the fast-inactivating K+ current in rat hippocampal neurons. Biophysical Journal, 70(1), 296–304.

    Article  PubMed  CAS  Google Scholar 

  • Guckenheimer, J., & Holmes, P. (1997). Nonlinear oscillations, dynamical systems, and bifurcations of vector fields (Corr. 5th print. ed., Applied mathematical sciences, Vol. 42). New York: Springer.

  • Hajós, M., Hoffmann, W. E., Orbán, G., Kiss, T., & Érdi, P. (2004). Modulation of septo-hippocampal Theta activity by GABAA receptors: an experimental and computational approach. Neuroscience, 126(3), 599–610.

    Article  PubMed  Google Scholar 

  • Hardy, J. A., & Higgins, G. A. (1992). Alzheimer’s disease: the amyloid cascade hypothesis. Science, 256(5054), 184–185.

    Article  PubMed  CAS  Google Scholar 

  • Hasselmo, M. E., Wyble, B. P., & Wallenstein, G. V. (1996). Encoding and retrieval of episodic memories: role of cholinergic and GABAergic modulation in the hippocampus. Hippocampus, 6(6), 693–708. doi:10.1002/(SICI)1098-1063(1996)6:6<693::AID-HIPO12>3.0.CO;2-W.

    Article  PubMed  CAS  Google Scholar 

  • Holscher, C., Gengler, S., Gault, V. A., Harriott, P., & Mallot, H. A. (2007). Soluble beta-amyloid[25–35] reversibly impairs hippocampal synaptic plasticity and spatial learning. European Journal of Pharmacology, 561(1–3), 85–90. doi:10.1016/j.ejphar.2007.01.040.

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich, E. M. (2007). Dynamical systems in neuroscience: The geometry of excitability and bursting (Computational neuroscience). Cambridge: MIT Press.

    Google Scholar 

  • Klausberger, T., & Somogyi, P. (2008). Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science, 321(5885), 53–57. doi:10.1126/science.1149381.

    Article  PubMed  CAS  Google Scholar 

  • Klausberger, T., Magill, P. J., Marton, L. F., Roberts, J. D., Cobden, P. M., Buzsaki, G., et al. (2003). Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature, 421(6925), 844–848. doi:10.1038/nature01374.

    Article  PubMed  CAS  Google Scholar 

  • Li, X., Coyle, D., Maguire, L., Watson, D. R., & McGinnity, T. M. (2010). Gray matter concentration and effective connectivity changes in Alzheimer’s disease: a longitudinal structural MRI study. Neuroradiology. doi:10.1007/s00234-010-0795-1.

  • Minati, L., Edginton, T., Bruzzone, M. G., & Giaccone, G. (2009). Current concepts in Alzheimer’s disease: a multidisciplinary review. American Journal of Alzheimer’s Disease and Other Dementias, 24(2), 95–121. doi:10.1177/1533317508328602.

    Article  PubMed  Google Scholar 

  • Morse, T. M., Carnevale, N. T., Mutalik, P. G., Migliore, M., & Shepherd, G. M. (2010). Abnormal excitability of oblique dendrites implicated in early alzheimer’s: a computational study. Frontiers in Neural Circuits, 4. doi:10.3389/fncir.2010.00016.

  • Mugantseva, E. A., & Podolski, L. Y. (2009). Animal model of Alzheimer’s disease: characteristics of EEG and memory. Central European Journal of Biology, 4, 507–514.

    Article  CAS  Google Scholar 

  • Orban, G., Kiss, T., & Erdi, P. (2006). Intrinsic and synaptic mechanisms determining the timing of neuron population activity during hippocampal theta oscillation. Journal of Neurophysiology, 96(6), 2889–2904. doi:10.1152/jn.01233.2005.

    Article  PubMed  Google Scholar 

  • Palop, J. J., & Mucke, L. (2010). Amyloid-beta-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nature Neuroscience, 13(7), 812–818. doi:10.1038/nn.2583.

    Article  PubMed  CAS  Google Scholar 

  • Palop, J. J., Chin, J., Roberson, E. D., Wang, J., Thwin, M. T., Bien-Ly, N., et al. (2007). Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron, 55(5), 697–711. doi:10.1016/j.neuron.2007.07.025.

    Article  PubMed  CAS  Google Scholar 

  • Pedroarena, C., & Llinas, R. (1997). Dendritic calcium conductances generate high-frequency oscillation in thalamocortical neurons. Proceedings of the National Academy of Sciences of the United States of America, 94(2), 724–728.

    Article  PubMed  CAS  Google Scholar 

  • Rotstein, H. G., Pervouchine, D. D., Acker, C. D., Gillies, M. J., White, J. A., Buhl, E. H., et al. (2005). Slow and fast inhibition and an H-current interact to create a theta rhythm in a model of CA1 interneuron network. Journal of Neurophysiology, 94(2), 1509–1518.

    Article  PubMed  Google Scholar 

  • Stewart, M., & Fox, S. E. (1990). Do septal neurons pace the hippocampal theta rhythm? Trends in Neurosciences, 13(5), 163–168.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, R. H., Capetillo-Zarate, E., Lin, M. T., Milner, T. A., & Gouras, G. K. (2010). Co-occurrence of Alzheimer’s disease ss-amyloid and tau pathologies at synapses. Neurobiology of Aging, 31(7), 1145–1152. doi:10.1016/j.neurobiolaging.2008.07.021.

    Article  PubMed  CAS  Google Scholar 

  • Tiraboschi, P., Hansen, L. A., Thal, L. J., & Corey-Bloom, J. (2004). The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology, 62(11), 1984–1989.

    PubMed  CAS  Google Scholar 

  • Toth, K., Freund, T. F., & Miles, R. (1997). Disinhibition of rat hippocampal pyramidal cells by GABAergic afferents from the septum. The Journal of Physiology, 500(Pt 2), 463–474.

    PubMed  CAS  Google Scholar 

  • Tran, M. H., Yamada, K., & Nabeshima, T. (2002). Amyloid beta-peptide induces cholinergic dysfunction and cognitive deficits: a minireview. Peptides, 23(7), 1271–1283.

    Article  PubMed  CAS  Google Scholar 

  • Vertes, R. P. (2005). Hippocampal theta rhythm: a tag for short-term memory. Hippocampus, 15(7), 923–935. doi:10.1002/hipo.20118.

    Article  PubMed  CAS  Google Scholar 

  • Villette, V., Poindessous-Jazat, F., Simon, A., Lena, C., Roullot, E., Bellessort, B., et al. (2010). Decreased rhythmic GABAergic septal activity and memory-associated theta oscillations after hippocampal amyloid-beta pathology in the rat. Journal of Neuroscience, 30(33), 10991–11003.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X.-J. (1998). Calcium coding and adaptive temporal computation in cortical pyramidal neurons. Journal of Neurophysiology, 79(3), 1549–1566.

    PubMed  CAS  Google Scholar 

  • Wang, X.-J. (2002). Pacemaker neurons for the theta rhythm and their synchronization in the septohippocampal reciprocal loop. Neurophysiology, 87, 889–900.

    PubMed  Google Scholar 

  • Wang, X.-J., & Buzsaki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. Journal of Neuroscience, 16(20), 6402–6413.

    PubMed  CAS  Google Scholar 

  • Warman, E. N., Durand, D. M., & Yuen, G. L. (1994). Reconstruction of hippocampal CA1 pyramidal cell electrophysiology by computer simulation. Journal of Neurophysiology, 71(6), 2033–2045.

    PubMed  CAS  Google Scholar 

  • Webster, N. J., Ramsden, M., Boyle, J. P., Pearson, H. A., & Peers, C. (2006). Amyloid peptides mediate hypoxic increase of L-type Ca2+ channels in central neurones. Neurobiology of Aging, 27(3), 439–445.

    Article  PubMed  CAS  Google Scholar 

  • Xu, C., Qian, C., Zhang, Z., Wu, C., Zhou, P., & Liang, X. (1998). Effects of beta-amyloid peptide on transient outward potassium current of acutely dissociated hippocampal neurons in CA1 sector in rats. Chinese Medical Journal (English Edition), 111(6), 492–495.

    CAS  Google Scholar 

  • Ye, H., Jalini, S., Mylvaganam, S., & Carlen, P. (2010). Activation of large-conductance Ca(2+)-activated K(+) channels depresses basal synaptic transmission in the hippocampal CA1 area in APP (swe/ind) TgCRND8 mice. Neurobiology of Aging, 31(4), 591–604.

    Article  PubMed  CAS  Google Scholar 

  • Ylinen, A., Soltesz, I., Bragin, A., Penttonen, M., Sik, A., & Buzsaki, G. (1995). Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells. Hippocampus, 5(1), 78–90.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, C. F., & Yang, P. (2006). Zinc-induced aggregation of Abeta (10–21) potentiates its action on voltage-gated potassium channel. Biochemical and Biophysical Research Communications, 345(1), 43–49. doi:10.1016/j.bbrc.2006.04.044.

    Article  PubMed  CAS  Google Scholar 

  • Zou, X., Coyle, D., Wong-Lin, K., & Maguire, L. (2011). Computational study of hippocampal-septal theta rhythm changes due to beta-amyloid-altered ionic channels. PLoS One.

Download references

Acknowledgement

This study is currently supported under the CNRT award by the Northern Ireland Department for Employment and Learning through its “Strengthening the All-Island Research Base” initiative. We are grateful to Dr. Christian Hölscher for comments on an earlier version of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zou.

Additional information

Action Editor: N. Kopell

Appendix

Appendix

The membrane capacitance C = 1 μF/cm 2 for all of the follow equations, therefore it will be ignored. The τ in (ms); E and V in (mV); I in (μA/cm 2); g in (mS/cm 2); α and β in (ms −1); K in (μM); B in (μM(msμA)−1 cm 2) and the rest are dimensionless constant. We used an Euler method for numerically integrating the stochastic differential equations, using a time step of 0.01 ms. Smaller time steps do not change our results.

1.1 Neuronal dynamics

The pyramidal somatic and dendritic membrane potentials, denoted by Vs and Vd, obtains the following equations:

$$ {\dot{V}_s} = - {I_L} - {I_{{Na}}} - {I_K} - {I_{{Ca}}} - {I_A} - {I_{{CT}}} - \frac{{{g_c}}}{p}\left( {{V_s} - {V_d}} \right) - {I_{{syn,s}}} + I {\dot{V}_s} = - {I_L} - {I_{{Na}}} - {I_K} - {I_{{Ca}}} - {I_A} - {I_{{CT}}} - \frac{{{g_c}}}{p}\left( {{V_s} - {V_d}} \right) - {I_{{syn,s}}} + I $$
(A1)
$$ {\dot{V}_d} = - {I_L} - {I_{{Ca}}} - {I_{{AHP}}} - {I_A} - {I_{{CT}}} - \frac{{{g_c}}}{{1 - p}}\left( {{V_d} - {V_s}} \right) - {I_{{syn,d}}} {\dot{V}_d} = - {I_L} - {I_{{Ca}}} - {I_{{AHP}}} - {I_A} - {I_{{CT}}} - \frac{{{g_c}}}{{1 - p}}\left( {{V_d} - {V_s}} \right) - {I_{{syn,d}}} $$
(A2)

Where g c  = 2 mS/cm 2 is the coupling conductance between soma and dendrite, p=somatic area/total area = 0.5. I is the injected DC current and I syn is the synaptic currents. I L =g L (V-E L ). In our work, all of the ionic currents are modelled by the Hodgkin-Huxley type formalism, thus the dynamic of a gating variable x satisfies first-order kinetics,

$$ \dot{x} = {\phi_x}\left[ {{\alpha_x}(1 - x) - {\beta_x}x} \right] = {\phi_x}\left[ {{x_{\infty }} - x} \right]/{\tau_x} \dot{x} = {\phi_x}\left[ {{\alpha_x}(1 - x) - {\beta_x}x} \right] = {\phi_x}\left[ {{x_{\infty }} - x} \right]/{\tau_x} $$
(A3)

This equation will be used to calculate all of the gating variables.

Channel

Definition

Parameters

I Na

\( {g_{{Na}}}m_{\infty }^3h\left( {V - {E_{{Na}}}} \right) {g_{{Na}}}m_{\infty }^3h\left( {V - {E_{{Na}}}} \right) \)

\( {m_{\infty }} = {\alpha_m}/\left( {{\alpha_m} + {\beta_m}} \right) {m_{\infty }} = {\alpha_m}/\left( {{\alpha_m} + {\beta_m}} \right) \)

\( {\alpha_m} = - 0.1\left( {V + 33} \right)/\exp \left[ { - 0.1\left( {V + 33} \right) - 1} \right] {\alpha_m} = - 0.1\left( {V + 33} \right)/\exp \left[ { - 0.1\left( {V + 33} \right) - 1} \right] \)

\( {\beta_m} = 4\exp \left[ { - \left( {V + 58} \right)/12} \right] {\beta_m} = 4\exp \left[ { - \left( {V + 58} \right)/12} \right] \)

\( {\alpha_h} = 0.07\exp \left[ { - \left( {V + 50} \right)/10} \right] {\alpha_h} = 0.07\exp \left[ { - \left( {V + 50} \right)/10} \right] \)

\( {\beta_h} = 1/\exp \left[ { - 0.1\left( {V + 20} \right) + 1} \right] {\beta_h} = 1/\exp \left[ { - 0.1\left( {V + 20} \right) + 1} \right] \)

I K

\( {g_K}{n^4}\left( {V - {E_K}} \right) {g_K}{n^4}\left( {V - {E_K}} \right) \)

\( {\alpha_n} = - 0.01(V + 34)/\exp [ - 0.1(V + 34) - 1] {\alpha_n} = - 0.01(V + 34)/\exp [ - 0.1(V + 34) - 1] \)

\( {\beta_n} = 0.125\exp \left[ { - \left( {V + 44} \right)/25} \right] {\beta_n} = 0.125\exp \left[ { - \left( {V + 44} \right)/25} \right] \)

I Ca

\( {g_{{Ca}}}{m_{\infty }}\left( {V - {E_{{Ca}}}} \right) {g_{{Ca}}}{m_{\infty }}\left( {V - {E_{{Ca}}}} \right) \)

\( {m_{\infty }} = 1/\exp \left[ { - \left( {V + 20} \right)/9} \right] {m_{\infty }} = 1/\exp \left[ { - \left( {V + 20} \right)/9} \right] \)

I AHP

\( \begin{gathered} {g_{{AHP}}}[C{a^{{2 + }}}]/([C{a^{{2 + }}}] + {K_D}) \hfill \\ (V - {E_K}) \hfill \\ \end{gathered} \begin{gathered} {g_{{AHP}}}[C{a^{{2 + }}}]/([C{a^{{2 + }}}] + {K_D}) \hfill \\ (V - {E_K}) \hfill \\ \end{gathered} \)

\( \frac{{d\left[ {C{a^{{2 + }}}} \right]}}{{dt}} = - \left[ {C{a^{{2 + }}}} \right]/{\tau_{{Ca}}} - B{I_{{Ca}}} \frac{{d\left[ {C{a^{{2 + }}}} \right]}}{{dt}} = - \left[ {C{a^{{2 + }}}} \right]/{\tau_{{Ca}}} - B{I_{{Ca}}} \)

\( {\tau_{{Ca}}} = 1000,B = 0.002,{K_D} = 30\mu M {\tau_{{Ca}}} = 1000,B = 0.002,{K_D} = 30\mu M \)

I A

\( {g_A}{a^3}b(V - {E_K}) {g_A}{a^3}b(V - {E_K}) \)

\( {\alpha_a} = - 0.05(V + 20)/\{ \exp [ - (V + 20)/15] - 1\} {\alpha_a} = - 0.05(V + 20)/\{ \exp [ - (V + 20)/15] - 1\} \)

\( {\beta_a} = 0.1\left( {V + 10} \right)/\left\{ {\exp \left[ {\left( {V + 10} \right)/8} \right] - 1} \right\} {\beta_a} = 0.1\left( {V + 10} \right)/\left\{ {\exp \left[ {\left( {V + 10} \right)/8} \right] - 1} \right\} \)

\( {\alpha_b} = 0.00015/\exp \left[ {\left( {V + 18} \right)/15} \right] {\alpha_b} = 0.00015/\exp \left[ {\left( {V + 18} \right)/15} \right] \)

\( {\beta_b} = 0.06/\left\{ {\exp \left[ { - \left( {V + 73} \right)/12} \right] + 1} \right\} {\beta_b} = 0.06/\left\{ {\exp \left[ { - \left( {V + 73} \right)/12} \right] + 1} \right\} \)

I CT

\( {g_{{CT}}}{c^2}d(V - {E_K}) {g_{{CT}}}{c^2}d(V - {E_K}) \)

\( \begin{gathered} {\alpha_c} = - 0.0077(V + {V_{{shift}}} + 103)/ \hfill \\ \{ \exp [ - (V + {V_{{shift}}} + 103)/12] - 1\} \hfill \\ \end{gathered} \begin{gathered} {\alpha_c} = - 0.0077(V + {V_{{shift}}} + 103)/ \hfill \\ \{ \exp [ - (V + {V_{{shift}}} + 103)/12] - 1\} \hfill \\ \end{gathered} \)

\( {\beta_c} = 0.91 - {\alpha_c} {\beta_c} = 0.91 - {\alpha_c} \)

\( {\alpha_d} = 1/\exp \left[ {\left( {V + 79} \right)/10} \right] {\alpha_d} = 1/\exp \left[ {\left( {V + 79} \right)/10} \right] \)

\( {\beta_d} = 4/\left\{ {\exp \left[ { - \left( {V - 82} \right)/27} \right] + 1} \right\} {\beta_d} = 4/\left\{ {\exp \left[ { - \left( {V - 82} \right)/27} \right] + 1} \right\} \)

\( {V_{{shift}}} = 40\log \left( {\left[ {C{a^{{2 + }}}} \right]/13.805} \right) {V_{{shift}}} = 40\log \left( {\left[ {C{a^{{2 + }}}} \right]/13.805} \right) \)

\( {\tau_{{Ca}}} = 0.9,B = 0.06 {\tau_{{Ca}}} = 0.9,B = 0.06 \)

The values of the other parameters are ϕ = 4, g L  = 0.1 and g Ca  = 0.5 for soma and dendrite, g Na  = 45, g K  = 18, g A  = 20 g CT  = 140 and g h  = 0.01 for soma and g AHP  = 5, g A  = 60 g CT  = 70 and g h  = 0.02 for dendrite; E L  = −65, E Na  = 55, E K  = −80, E Ca  = 120, and I μ  = 4.9.

The OLM neuron is described as a single compartment model,

$$ \dot{V} = - {I_L} - {I_{{Na}}} - {I_K} - {I_{{Ca}}} - {I_h} - {I_{{AHP}}} - {I_{{syn}}} + I \dot{V} = - {I_L} - {I_{{Na}}} - {I_K} - {I_{{Ca}}} - {I_h} - {I_{{AHP}}} - {I_{{syn}}} + I $$
(A4)

Channel

Definition

Parameters

I Na

\( {g_{{Na}}}m_{\infty }^3h\left( {V - {E_{{Na}}}} \right) \)

\( {\alpha_m} = - 0.1\left( {V + 35} \right)/\exp \left[ { - 0.1\left( {V + 35} \right) - 1} \right] \)

\( {\beta_m} = 4\exp \left[ { - \left( {V + 60} \right)/18} \right] \)

\( {\alpha_h} = 0.07\exp \left[ { - \left( {V + 58} \right)/20} \right] \)

\( {\beta_h} = 1/\exp \left[ { - 0.1\left( {V + 28} \right) + 1} \right] \)

IK

\( {g_K}{n^4}\left( {V - {E_K}} \right) \)

\( {\alpha_n} = - 0.01(V + 34)/\exp [ - 0.1(V + 34) - 1] \)

\( {\beta_n} = 0.125\exp \left[ { - \left( {V + 44} \right)/80} \right] \)

ICa

\( {g_{{Ca}}}m_{\infty }^2\left( {V - {E_{{Ca}}}} \right) \)

\( {m_{\infty }} = 1/\left\{ {\exp \left[ { - \left( {V + 20} \right)/9} \right] + 1} \right\} \)

IAHP

\( {g_{{AHP}}}\left[ {C{a^{{2 + }}}} \right]/\left( {\left[ {C{a^{{2 + }}}} \right] + {K_D}} \right)\left( {V - {E_K}} \right) \)

\( \frac{{d\left[ {C{a^{{2 + }}}} \right]}}{{dt}} = - \left[ {C{a^{{2 + }}}} \right]/{\tau_{{Ca}}} - B{I_{{Ca}}} \)

\( {\tau_{{Ca}}} = 80,B = 0.002,{K_D} = 30\mu M \)

Ih

\( {g_h}H\left( {V - {E_h}} \right) \)

\( {H_{\infty }} = 1/\left\{ {\exp \left[ {\left( {V + 80} \right)/10} \right] + 1} \right\} \)

\( {\tau_H} = 200/\left\{ {\exp \left[ {\left( {V + 70} \right)/20} \right]} \right\} + \left. {\exp \left[ { - \left( {V + 70} \right)/20} \right] + 5} \right\} \)

The other parameters are ϕ = 5, g L  = 0.1, g Na  = 35, g K  = 9, g AHP  = 10, g Ca  = 1, gh = 0.15; E L  = −65, E Na  = 55, E K  = −90, E Ca  = 120, E h  = −40, I μ  = 0.

The basket neuron is described as a single compartment model,

$$ \dot{V} = - {I_L} - {I_{{Na}}} - {I_K} - {I_{{syn}}} + I \dot{V} = - {I_L} - {I_{{Na}}} - {I_K} - {I_{{syn}}} + I $$
(A6)

The parameters for calculation of the ionic currents are the same as that of OLM and I μ  = 1.4.

The MSGABA neuron is described as a single compartment model,

$$ \dot{V} = - {I_L} - {I_{{Na}}} - {I_K} - {I_{{KS}}} - {I_{{syn}}} + I \dot{V} = - {I_L} - {I_{{Na}}} - {I_K} - {I_{{KS}}} - {I_{{syn}}} + I $$
(A7)

Channel

Definition

Parameters

INa

\( {g_{{Na}}}m_{\infty }^3h\left( {V - {E_{{Na}}}} \right) \)

\( {\alpha_m} = - 0.1\left( {V + 33} \right)/\exp \left[ { - 0.1\left( {V + 33} \right) - 1} \right] \)

\( {\beta_m} = 4\exp \left[ { - \left( {V + 58} \right)/18} \right] \)

\( {\alpha_h} = 0.07\exp \left[ { - \left( {V + 51} \right)/10} \right] \)

\( {\beta_h} = 1/\exp \left[ { - 0.1\left( {V + 21} \right) + 1} \right] \)

IK

\( {g_K}{n^4}\left( {V - {E_K}} \right) \)

\( {\alpha_n} = - 0.01\left( {V + 38} \right)/\exp \left[ { - 0.1\left( {V + 38} \right) - 1} \right] \)

\( {\beta_n} = 0.125\exp \left[ { - \left( {V + 48} \right)/80} \right] \)

IKS

\( {g_{{KS}}}pq\left( {V - {E_K}} \right) \)

\( {p_{\infty }} = 1/\left\{ {\exp \left[ { - \left( {V + 34} \right)/6.5} \right] + 1} \right\} \)

\( {\tau_p} = 6 \)

\( {q_{\infty }} = 1/\left\{ {\exp \left[ {\left( {V + 65} \right)/6.6} \right] + 1} \right\} \)

\( {\tau_q} = {\tau_{{q0}}}\left( {1 + 1/\left\{ {\exp \left[ { - \left( {V + 50} \right)/6.8} \right] + 1} \right\}} \right) \)

\( {\tau_{{q0}}} = 100 \)

The other parameters are ϕ = 5, g L  = 0.1, g Na  = 50, g K  = 8, g KS  = 12; E L  = −50, E Na  = 55, E K  = −85, I μ  = 22.

1.2 Synaptic connection definition

There are three types of synaptic neurotransmitters, the inhibitory GABAA, the excitatory NMDA and AMPA. The GABAA inhibitory post synaptic current (IPSC) is described as \( {I_{{GAB{A_A}}}} = {g_{{syn}}}s\left( {V - {E_{{GAB{A_A}}}}} \right) {I_{{GAB{A_A}}}} = {g_{{syn}}}s\left( {V - {E_{{GAB{A_A}}}}} \right) \), where the activation variable s is calculated by \( \dot{s} = \alpha F\left( {{V_{{pre}}}} \right)\left( {1 - s} \right) - \beta s \dot{s} = \alpha F\left( {{V_{{pre}}}} \right)\left( {1 - s} \right) - \beta s \). The V pre is the presynaptic neuron membrane potential, \( F\left( {{V_{{pre}}}} \right) = 1/\left[ {1 + \exp \left( { - {V_{{pre}}}/K} \right)} \right] F\left( {{V_{{pre}}}} \right) = 1/\left[ {1 + \exp \left( { - {V_{{pre}}}/K} \right)} \right] \). Parameters for different neurons couples are:

basket-pyramidal (b-p)

α = 10, β = 0.1, K = 2, \( {E_{{GAB{A_A}}}} = - 80 \), g sym  = 2.76

OLM-basket (o-b)

α = 20, β = 0.1, K = 2, \( {E_{{GAB{A_A}}}} = - 80 \), g sym  = 1.76

OLM-pyramidal (o-p)

α = 20, β = 0.1, K = 2, \( {E_{{GAB{A_A}}}} = - 85 \), g sym  = 1.76

OLM-MSGABA (o-m)

α = 20, β = 0.1, K = 0.5, \( {E_{{GAB{A_A}}}} = - 80 \), g sym  = 0.5

basket-basket (b-b)

α = 10, β = 0.1, K = 2, \( {E_{{GAB{A_A}}}} = - 75 \), g sym  = 0.125

MSGABA-OLM (m-o)

α = 10, β = 0.1, K = 2, \( {E_{{GAB{A_A}}}} = - 75 \), g sym  = 0.5

MSGABA-MSGABA (m-m)

α = 10, β = 0.1, K = 2, \( {E_{{GAB{A_A}}}} = - 75 \), g sym  = 0.25

MSGABA-basket (m-b)

α = 10, β = 0.1, K = 2, \( {E_{{GAB{A_A}}}} = - 75 \), g sym  = 1

The AMPA and NMDA excitatory post synaptic current (EPSP) are described as \( {I_{{AMPA}}} = {g_{{AMPA}}}s\left( {V - {E_{{AMPA}}}} \right) {I_{{AMPA}}} = {g_{{AMPA}}}s\left( {V - {E_{{AMPA}}}} \right) \) and \( {I_{{NMDA}}} = {g_{{NMDA}}}B(V)s\left( {V - {E_{{NMDA}}}} \right) {I_{{NMDA}}} = {g_{{NMDA}}}B(V)s\left( {V - {E_{{NMDA}}}} \right) \), respectively. s is updated as \( \dot{s} = \alpha [T](1 - s) - \beta s \dot{s} = \alpha [T](1 - s) - \beta s \), \( [T] = {T_{{\max }}}/\left[ {1 + \exp \left( { - {V_{{pre}}} + {V_p}} \right)/{K_p}} \right] [T] = {T_{{\max }}}/\left[ {1 + \exp \left( { - {V_{{pre}}} + {V_p}} \right)/{K_p}} \right] \), V p  = 2, V K  = 5, B(V) is calculated by \( B(V) = 1/\left\{ {1 + \exp \left( { - 0.062V} \right)\left[ {M{g^{{2 + }}}} \right]/3.5} \right\} B(V) = 1/\left\{ {1 + \exp \left( { - 0.062V} \right)\left[ {M{g^{{2 + }}}} \right]/3.5} \right\} \), where [Mg 2+ ] = 1 mM by default. The α and β for AMPA. and NMDA are α = 1.1, β = 0.19 and α = 0.072, β = 0.0066, respectively. \( {E_{{AMPA}}} = {E_{{NMDA}}} = 0 {E_{{AMPA}}} = {E_{{NMDA}}} = 0 \). From pyramidal to basket neurons g AMPA  = 0.1, and from pyramidal to OLM neurons g AMPA  = 1.35 and g AMPA  = 0.625. The summated synaptic current is normalized by the number of presynaptic neurons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, X., Coyle, D., Wong-Lin, K. et al. Beta-amyloid induced changes in A-type K+ current can alter hippocampo-septal network dynamics. J Comput Neurosci 32, 465–477 (2012). https://doi.org/10.1007/s10827-011-0363-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-011-0363-7

Keyword

Navigation