Skip to main content

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Log in

A new DVCC-based fully cascadable voltage-mode full-wave rectifier

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, a new voltage-mode (VM) full-wave rectifier circuit employing two plus-type differential voltage–current conveyors, two grounded resistors, and two diodes is proposed. The proposed full-wave rectifier enjoys high input impedance and low output impedance; accordingly, it is suitable for direct cascading with other VM circuits without requiring additional buffers. It employs only two grounded resistors which are advantageous for integrated circuit implementations. However, it needs a single resistor-matching condition. It is simulated using SPICE program to verify the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tietze, U., Schenk, C., Gramm, E.: Electronic circuits-handbook for design and application, Springer, (2008). ISBN 978-3-540-78655-9

  2. Monpapassorn, A., Dejhan, K., Cheevasuvit, F.: A full-wave rectifier using a current conveyor and current mirrors. Int. J. Electron. 88(7), 751–758 (2001). doi:10.1080/00207210110052892

    Article  Google Scholar 

  3. Toumazou, C., Lidgey, F.J., Chattong, S.: High frequency current conveyor precision full-wave rectifier. Electron. Lett. 30(10), 745–746 (1994). doi:10.1049/el:19940539

    Article  Google Scholar 

  4. Anuntahirunrat, K., Tangsrirat, W., Riewruja, V., Surakampontorn, W.: Sinusoidal frequency doubler and full-wave rectifier using translinear current controlled conveyors. The IEEE Asia-Pacific Conference on. Circuits and Systems, IEEE APCCAS, p. 166–169, 2000. doi:10.1109/APCCAS.2000.913433

  5. Kumngern, M.: High frequency and high precision CMOS full-wave rectifier. IEEE International Conference on Communication Systems (ICCS), pp. 5–8, (2010). doi:10.1109/ICCS.2010.5686166

  6. Yuce, E., Minaei, S., Cicekoglu, O.: Full-wave rectifier realization using only two CCII+s and NMOS transistors. Int. J. Electron. 93(8), 533–541 (2006). doi:10.1080/00207210600711606

    Article  Google Scholar 

  7. Minaei, S., Yuce, E.: A new full-wave rectifier circuit employing single dual-X current conveyor. Int. J. Electron. 95(8), 777–784 (2008). doi:10.1080/00207210802141826

    Article  Google Scholar 

  8. Gift, S.J.G., Maundy, B.: Versatile precision full-wave rectifiers for instrumentation and measurements. IEEE Trans. Instrum. Meas. 56(5), 1703–1710 (2007). doi:10.1109/TIM.2007.904565

    Article  Google Scholar 

  9. Koton, J., Herencsar, N., Vrba, K.: Minimal configuration precision full-wave rectifier using current and voltage conveyors. IEICE Electronics Express (2010) vol. 7, https://www.jstage.jst.go.jp/AF06S010SryTopHyj?sryCd=elex&noVol=7&noIssue=12no. 12, pp. 844–849. doi:10.1587/elex.7.844

  10. Koton, J., Herencsar, N., Vrba, K.: Current and voltage conveyors in current and voltage-mode precision full-wave rectifiers. Radioengineering 20(1), 19–24 (2011). (ISSN: 1805-9600)

    Google Scholar 

  11. Monpapassorn, A.: Low output impedance dual CCII full-wave rectifier. Int. J. Electron. 100(5), 648–654 (2013). doi:10.1080/00207217.2012.720943

    Article  Google Scholar 

  12. Stiurca, D.: Truly temperature independent current conveyor precision rectifier. Electron. Lett. 31(16), 1302–1303 (1995). doi:10.1049/el:19950905

    Article  Google Scholar 

  13. Beg, P.I., Khan, A., Maheshwari, S.: Biphase amplifier based rectifiers using current conveyors. Int. J. Comput. Appl. 42(3), 14–18 (2012). doi:10.1109/ISPCC.2012.6224352

    Google Scholar 

  14. Yildiz, M., Minaei, S., Yuce, E.: A new high performance full-wave rectifier realization employing only a single CCII-, two pn junction diodes and two resistors. Online published in Scientia Iranica (2016)

  15. Kumngern, M.: New versatile precision rectifier. IET Circuits Devices Syst. 8, 141–151 (2014). doi:10.1049/iet-cds.2013.0232

    Article  Google Scholar 

  16. Minaei, S., Yuce, E.: New squarer circuits and a current-mode full-wave rectifier topology suitable for integration. Radioengineering 19, 657–661 (2010). (ISSN: 1805-9600)

  17. Khateb, F., Vavra, J., Biolek, D.: A novel current-mode full-wave rectifier based on one CDTA and two diodes. Radioengineering 19, 437–445 (2010). (ISSN: 1805-9600)

    Google Scholar 

  18. Koton, J., Herencsar, N., Vrba, K., Minaei, S.: Precision full-wave current-mode rectifier using current differencing transconductance amplifier. 3rd IEEE International Conference on Communication Software and Networks (ICCSN), pp. 460–463 (2011). doi:10.1109/ICCSN.2011.6014935

  19. Herencsar, N., Vrba, K.: Current-mode precision full-wave rectifier using single DXCCII and two diodes. 20th European Conference on Circuit Theory and Design (ECCTD), pp. 508–511 (2011). doi:10.1109/ECCTD.2011.6043400

  20. Yuce, E., Alpaslan, H.: A CMOS current rectifier configuration suitable for integration. J. Circuits Syst. Comput. 21(7), 12 (2012). doi:10.1142/S0218126612500521

    Article  Google Scholar 

  21. Sagbas, M., Minaei, S., Ayten, U.E.: Component reduced current-mode full-wave rectifier circuits using single active component. IET Circuits Devices Syst. 10(1), 1–11 (2016). doi:10.1049/iet-cds.2013.0461

    Article  Google Scholar 

  22. Basak, M.E., Acar, F.: A new fully integrated high frequency full-wave rectifier realization. Inf. Midem J. Microelectron. Electron. Compon. Mater. 45(2), 101–109 (2015). (ISSN: 2232-6979)

    Google Scholar 

  23. Pal, K.: Modified current conveyors and their applications. Microelectron. J. 20, 37–40 (1989). doi:10.1016/0026-2692(89)90076-1

    Article  Google Scholar 

  24. Ferri, G., Guerrini, N.C.: Low Voltage, Low Power CMOS Current Conveyors. Springer, (2003). ISBN 978-0-306-48720-0

  25. Elwan, H.O., Soliman, A.M.: Novel CMOS differential voltage current conveyor and its applications. IEE Proc. Circuits Devices Syst. 144, 195–200 (1997). doi:10.1049/ip-cds:19971081

    Article  Google Scholar 

  26. Fabre, A., Saaid, O., Barthelemy, H.: on the frequency limitations of the circuits based on 2nd-generation current conveyors. Analog Integr Circuits Signal Process. 7(2), 113–129 (1995). doi:10.1007/BF01239166

    Article  Google Scholar 

  27. Holzmann, P.J., Wiegerink, R.J., Gierkink, S.L.J., Wassenaar, R.F., Stroet, P.: A low-offset low-voltage CMOS Op Amp with rail-to-rail input and output ranges. 1996 IEEE International Symposium on Circuits and Systems (ISCAS ’96), vol. 1, pp. 179–182, (1996). doi:10.1109/ISCAS.1996.539838

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkan Yuce.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, M.A., Yuce, E. & Minaei, S. A new DVCC-based fully cascadable voltage-mode full-wave rectifier. J Comput Electron 15, 1440–1449 (2016). https://doi.org/10.1007/s10825-016-0891-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0891-5

Keywords

Navigation