Skip to main content
Log in

Simulation of dielectric behavior in RFeO\(_{3}\) orthoferrite ceramics (R = rare earth metals)

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Due to their colossal dielectric constant (CDC), \(\hbox {RFeO}_{3}\), orthoferrite ceramics (R = rare earth metal) have recently attracted much attention. In the present research, the dielectric constants of \(\hbox {RFeO}_{3}\) orthoferrite ceramics, whether with or without CDC, have been simulated. The type of synthesis method, the type of R material, temperature, and frequency as the effective parameters on the dielectric behavior are introduced to the model. Another input parameter is the ratio of \(\hbox {Fe}^{+2}/\hbox {Fe}^{+3}\) peak area (in the XPS diagram), which is the most important parameter that affects the CDC behavior. Initially, a colossal database is formed by means of WebPlotDigitizer software and 2930 experimental data, and then the simulation is carried out through gene expression programming. Two case studies are also performed on \(\hbox {PrFeO}_{3}\) and \(\hbox {NdFeO}_{3}\) orthoferrite ceramics to validate the accuracy of the presented model. \(\hbox {PrFeO}_{3}\) exhibits significant CDC behavior whereas the \(\hbox {NdFeO}_{3}\) ceramic samples possess little CDC property, both of which were precisely simulated by the model. Two-dimensional tenth-degree equations resulting from the model predict the dielectric constant variations accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sultan, K., Ikram, M., Asokan, K.: Structural, optical and dielectric study of Mn doped \({\rm PrFeO}_{3}\) ceramics. Vacuum 99, 251–258 (2014)

    Article  Google Scholar 

  2. Sati, P.C., Kumar, M., Chhoker, S.: Low temperature ferromagnetic ordering and dielectric properties of \({\rm Bi}_{1-{\rm x}}{\rm Dy}_{{\rm x}}{\rm FeO}_{3}\) ceramics. Ceram. Int. 41, 3227–3236 (2015)

    Article  Google Scholar 

  3. Mizokawa, T., Fujimori, A., Arima, T., Tokura, Y., Mori, N., Akimitsu, J.: Electronic structure of \({\rm PrNiO}_{3}\) studied by photoemission and X-ray-absorption spectroscopy: band gap and orbital ordering. Phys. Rev. B 52, 13865–13873 (1995)

    Article  Google Scholar 

  4. Medarde, M.L.: Structural, magnetic and electronic properties of \(\text{ RNiO }_{3}\) perovskites (R = rare earth). J. Phys. Condens. Matter 9, 1679–1707 (1997)

    Article  Google Scholar 

  5. Chanda, S., Saha, S., Dutta, A., Sinha, T.P.: Raman spectroscopy and dielectric properties of nanoceramic \({\rm NdFeO}_{3}\). Mater. Res. Bull. 48, 1688–1693 (2013)

    Article  Google Scholar 

  6. Minh, N.Q.: Ceramic fuel-cells. J. Am. Ceram. Soc. 76, 563–588 (1993)

    Article  Google Scholar 

  7. Ho, T.G., Ha, T.D., Pham, Q.N., Giang, H.T., Do, T.A.T., Nguyen, T.N.: Nanosized perovskite oxide NdFeO\(_{3}\) as material for a carbon-monoxide catalytic gas sensor. Adv. Nat. Sci. 2, 015012–15021 (2011)

  8. Niu, X., Li, H., Liu, G.: Preparation, characterization and photocatalytic properties of \({\rm R}_{{\rm E}}{\rm FeO}_{3}\) (RE = Sm, Eu, Gd). J. Mol. Catal. A 232, 89–93 (2005)

    Article  Google Scholar 

  9. Kimel, A.V., Kirilyuk, A., Tsvetkov, A., Pisarev, R.V., Rasing, T.: Laser-induced ultrafast spin reorientation in the antiferromagnet \(\text{ TmFeO }_{3}\). Nature 429, 850–853 (2004)

    Article  Google Scholar 

  10. Kutnjak, Z., Petzelt, J., Blinc, R.: The giant electromechanical response in ferroelectric relaxors as a critical phenomenon. Nature 441, 956–959 (2006)

    Article  Google Scholar 

  11. Gholizadeh, A.: X-ray peak broadening analysis in \({\rm LaMnO}_3+\delta \) nano-particles with rhombohedral crystal structure. J. Adv. Mater. Proc. 3, 71–83 (2015)

    Google Scholar 

  12. Shi, C., Hao, Y., Hu, Z.: Microstructure and colossal dielectric behavior of \({\rm Ca}_{2}{\rm TiMnO}_{6}\) ceramics. Scr. Mater. 64, 272–275 (2011)

    Article  Google Scholar 

  13. Prasad, B.V., Rao, G.N., Chen, J.W., Babu, D.S.: Colossal dielectric constant in \({\rm PrFeO}_{3}\) semiconductor ceramics. Solid State Sci. 14, 225–228 (2012)

    Article  Google Scholar 

  14. Prasad, B.V., Rao, G.N., Chen, J.W., Babu, D.S.: Abnormal high dielectric constant in \({\rm SmFeO}_{3}\) semiconductor ceramics. Mater. Res. Bull. 46, 1670–1673 (2011)

    Article  Google Scholar 

  15. Hunpratub, S., Thongbai, P., Yamwong, T., Yimnirun, R., Maensiri, S.: Dielectric relaxations and dielectric response in multiferroic \({\rm BiFeO}_{3}\) ceramics. Appl. Phys. Lett. 94, 062904 (2009)

    Article  Google Scholar 

  16. Idrees, M., Nadeem, M., Atif, M., Siddique, M., Mehmood, M., Hassan, M.M.: Origin of colossal dielectric response in \({\rm LaFeO}_{3}\). Acta Mater. 59, 1338–1345 (2011)

    Article  Google Scholar 

  17. Xia, W., Wang, C.C., Liu, P., Ye, J.L., Ni, W.: Colossal dielectric behavior in \({\rm TbFeO}_{3}\) ceramics. Curr. Appl. Phys. 13, 1743–1745 (2013)

    Article  Google Scholar 

  18. Abdellahi, M., Abhari, A., Bahmanpour, M.: Preparation and characterization of orthoferrite \({\rm PrFeO}_{3}\) ceramic. Ceram. Int. 42, 4637–4641 (2016)

    Article  Google Scholar 

  19. Koza, J.R.: Genetic Programming: on the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  20. Castelli, M., Vanneschi, L., Silva, S.: Prediction of high performance concrete strength using genetic programming with geometric semantic genetic operators. Exp. Syst. Appl. 40, 6856–6862 (2013)

    Article  Google Scholar 

  21. Sonebi, M., Cevik, A.: Genetic programming based formulation for fresh and hardened properties of self-compacting concrete containing pulverised fuel ash. Constr. Build Mater. 23, 2614–2622 (2009)

    Article  Google Scholar 

  22. Abdellahi, M.: The best conditions for minimizing the synthesis time of nanocomposites during high energy ball milling: modeling and optimizing. J. Mater. Res. 28, 3270–3278 (2013)

    Google Scholar 

  23. Abdellahi, M., Bahmanpour, H., Bahmanpour, M.: The best conditions for minimizing the synthesis time of nanocomposites during high energy ball milling. Modeling and optimizing. Ceram. Int. 40(7), 9675–9692 (2014)

    Article  Google Scholar 

  24. Ebrahimi-Kahrizsangi, R., Abdellahi, M., Bahmanpour, M.: Ignition time of nanopowders during milling: a novel simulation. Powder Technol. 272, 224–234 (2015)

    Article  Google Scholar 

  25. Abdellahi, M., Bahmanpour, M., Bahmanpour, M.: Laminating; the best way to improve Charpy impact energy of nanocomposites. Ceram. Int. 40(10), 16115–16125 (2014)

    Article  Google Scholar 

  26. Abdellahi, M., Bahmanpour, M., Bahmanpour, M.: Modeling Seebeck coefficient of \({\rm Ca}_{3- {\rm x}}{\rm M}_{{\rm x}}{\rm Co}_{4}{\rm O}_{9}\) (M = Sr, Pr, Ga, Ca, Ba, La, Ag) thermoelectric ceramics. Ceram. Int. 41(1), 345–352 (2014)

    Article  Google Scholar 

  27. Sabouhi, R., Ghayour, H., Abdellahi, M., Bahmanpour, M.: Measuring the mechanical properties of polymer–carbon nanotube composites by artificial intelligence. Int. J. Damage Mech. 25, 538–556 (2016)

    Article  Google Scholar 

  28. Ghayour, H., Abdellahi, M., Bahmanpour, M.: Artificial intelligence and ceramic tools: experimental study, modeling and optimizing. Ceram. Int. 41(10), 13470–13479 (2015)

    Article  Google Scholar 

  29. Huang, S., Shi, L., Tian, Z., Yuann, S., Wang, L., Gong, G., Yin, C., Zerihun, G.: High-temperature colossal dielectric response in \(\text{ RFeO }_{3}\) (R = La, Pr and Sm) ceramics. Ceram. Int. 41, 691–698 (2015)

    Article  Google Scholar 

  30. Ye, J.L., Wang, C.C., Ni, W., Sun, X.H.: Dielectric properties of ErFeO\(_{3}\) ceramics over a broad temperature range. J. Alloys Compd. 617, 850–854 (2014)

    Article  Google Scholar 

  31. Ma, Y., Chen, X.M., Lin, Y.Q.: Relaxorlike dielectric behavior and weak ferromagnetism in YFeO\(_{3}\) ceramics. J. Appl. Phys. 103, 124111 (2008)

    Article  Google Scholar 

  32. Mir, S.A., Ikram, M., Asokan, K.: Structural, optical and dielectric properties of Ni substituted NdFeO\(_{3}\). Optik 125, 6903–6908 (2014)

    Article  Google Scholar 

  33. Ghayour, H., Abdellahi, M., Bahmanpourb, M.: Simulation of thermoelectric materials efficiency. The case study of \({\rm Sr}_{1-{\rm x}}{\rm Y}_{{\rm x}}{\rm TiO}_{3}\) thermoelectric ceramic. Ceram. Int. 42(6), 7259–7269 (2016)

    Article  Google Scholar 

  34. Ghayour, H., Abdellahi, M.: A brief review of the effect of grain size variation on the electrical properties of \({\rm BaTiO}_{3}\)-based ceramics. Powder Technol. 292, 84–93 (2016)

    Article  Google Scholar 

  35. Bhowmik, R.N., Naresh, N.: Structure, AC conductivity and complex impedance study of Co\(_3\)O\(_4\) and Fe\(_3\)O\(_4\) mixed spinel ferrites. Int. J. Eng. Sci. Technol. 2, 40–52 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Abdellahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghayour, H., Abdellahi, M., Bahmanpour, M. et al. Simulation of dielectric behavior in RFeO\(_{3}\) orthoferrite ceramics (R = rare earth metals). J Comput Electron 15, 1275–1283 (2016). https://doi.org/10.1007/s10825-016-0886-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0886-2

Keywords

Navigation