Skip to main content

Advertisement

Log in

Limiting assumptions in structure-based design: binding entropy

  • Perspective
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In order to deal with the complexity of biological systems at the atomic level, limiting assumptions are often made which do not reflect the reality of the system under study. One example is the assumption that the entropy of binding of the macromolecule is not influenced significantly by the different ligands. Recent experimental data on ligands binding to HIV-1 protease challenge this assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Feng JA, Marshall GR (2010) SKATE: a docking program that decouples systematic sampling from scoring. J Comput Chem 31:2540–2554

    Article  CAS  Google Scholar 

  2. Kear JL, Blackburn ME, Veloro AM, Dunn BM, Fanucci GE (2009) Subtype polymorphisms among HIV-1 protease variants confer altered flap conformations and flexibility. J Am Chem Soc 131:14650–14651

    Article  CAS  Google Scholar 

  3. Blackburn ME, Veloro AM, Fanucci GE (2009) Monitoring inhibitor-induced conformational population shifts in HIV-1 protease by pulsed EPR spectroscopy. Biochemistry 48:8765–8767

    Article  CAS  Google Scholar 

  4. Galiano L, Ding F, Veloro AM, Blackburn ME, Simmerling C, Fanucci GE (2009) Drug pressure selected mutations in HIV-1 protease alter flap conformations. J Am Chem Soc 131:430–431

    Article  CAS  Google Scholar 

  5. Torbeev VY, Raghuraman H, Mandal K, Senapati S, Perozo E, Kent SB (2009) Dynamics of “flap” structures in three HIV-1 protease/inhibitor complexes probed by total chemical synthesis and pulse-EPR spectroscopy. J Am Chem Soc 131:884–885

    Article  CAS  Google Scholar 

  6. Banham JE, Baker CM, Ceola S, Day IJ, Grant GH, Groenen EJ, Rodgers CT, Jeschke G, Timmel CR (2008) Distance measurements in the borderline region of applicability of CW EPR and DEER: a model study on a homologous series of spin-labelled peptides. J Magn Reson 191:202–218

    Article  CAS  Google Scholar 

  7. Jeschke G, Koch A, Jonas U, Godt A (2002) Direct conversion of EPR dipolar time evolution data to distance distributions. J Magn Reson 155:72–82

    Article  CAS  Google Scholar 

  8. Lopez CJ, Fleissner MR, Guo Z, Kusnetzow AK, Hubbell WL (2009) Osmolyte perturbation reveals conformational equilibria in spin-labeled proteins. Protein Sci 18:1637–1652

    Article  CAS  Google Scholar 

  9. Lovett JE, Bowen AM, Timmel CR, Jones MW, Dilworth JR, Caprotti D, Bell SG, Wong LL, Harmer J (2009) Structural information from orientationally selective DEER spectroscopy. Phys Chem Chem Phys 11:6840–6848

    Article  CAS  Google Scholar 

  10. Chiang YW, Borbat PP, Freed JH (2005) The determination of pair distance distributions by pulsed ESR using Tikhonov regularization. J Magn Reson 172:279–295

    Article  CAS  Google Scholar 

  11. Ward R, Bowman A, El-Mkami H, Owen-Hughes T, Norman DG (2009) Long distance PELDOR measurements on the histone core particle. J Am Chem Soc 131:1348–1349

    Article  CAS  Google Scholar 

  12. Ding F, Layten M, Simmerling C (2008) Solution structure of HIV-1 protease flaps probed by comparison of molecular dynamics simulation ensembles and EPR experiments. J Am Chem Soc 130:7184–7185

    Article  CAS  Google Scholar 

  13. Lovett JE, Hoffmann M, Cnossen A, Shutter AT, Hogben HJ, Warren JE, Pascu SI, Kay CW, Timmel CR, Anderson HL (2009) Probing flexibility in porphyrin-based molecular wires using double electron electron resonance. J Am Chem Soc 131:13852–13859

    Article  CAS  Google Scholar 

  14. Galiano L, Bonora M, Fanucci GE (2007) Interflap distances in HIV-1 protease determined by pulsed EPR measurements. J Am Chem Soc 129:11004–11005

    Article  CAS  Google Scholar 

  15. Smythe ML, Nakaie CR, Marshall GR (1995) α- versus 310-helical conformation of alanine-based peptides in aqueous solution: an electron spin resonance investigation. J Am Chem Soc 117:10555–10562

    Article  CAS  Google Scholar 

  16. Galiano L, Bonora M, Fanucci GE (2007) Interflap distances in HIV-1 protease determined by pulsed EPR measurements. J Am Chem Soc 129:11004–11005

    Article  CAS  Google Scholar 

  17. Tang YT, Marshall GR (2011) PHOENIX: a scoring function for affinity prediction derived using high-resolution crystal structures and calorimetry measurements. J Chem Inf Model 51:214–228

    Article  CAS  Google Scholar 

  18. Martin SF (2007) Preorganization in biological systems: are conformational constraints worth the energy? Pure Appl Chem 79:193–200

    Article  CAS  Google Scholar 

  19. Benfield AP, Teresk MG, Plake HR, DeLorbe JE, Millspaugh LE, Martin SF (2006) Ligand preorganization may be accompanied by entropic penalties in protein-ligand interactions. Angew Chem Int Ed Engl 45:6830–6835

    Article  CAS  Google Scholar 

  20. Benfield AP, Whiddon BB, Clements JH, Martin SF (2007) Structural and energetic aspects of Grb2-SH2 domain-swapping. Arch Biochem Biophys 462:47–53

    Article  CAS  Google Scholar 

  21. Clements JH, DeLorbe JE, Benfield AP, Martin SF (2010) Binding of flexible and constrained ligands to the Grb2 SH2 domain: structural effects of ligand preorganization. Acta Crystallogr D Biol Crystallogr 66:1101–1115

    Article  Google Scholar 

  22. DeLorbe JE, Clements JH, Teresk MG, Benfield AP, Plake HR, Millspaugh LE, Martin SF (2009) Thermodynamic and structural effects of conformational constraints in protein-ligand interactions. Entropic paradoxy associated with ligand preorganization. J Am Chem Soc 131:16758–16770

    Article  CAS  Google Scholar 

  23. Delorbe JE, Clements JH, Whiddon BB, Martin SF (2010) Thermodynamic and structural effects of macrocyclization as a constraining method in protein-ligand interactions. ACS Med Chem Lett 1:448–452

    Article  CAS  Google Scholar 

  24. Ward JM, Gorenstein NM, Tian J, Martin SF, Post CB (2010) Constraining binding hot spots: NMR and molecular dynamics simulations provide a structural explanation for enthalpy-entropy compensation in SH2-ligand binding. J Am Chem Soc 132:11058–11070

    Article  CAS  Google Scholar 

  25. Kissinger CR, Dunker AK, Shakhnovich E (1999) Disorder in protein structure and function. Pac Symp Biocomput 4:517–519

    Google Scholar 

  26. Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246

    Article  CAS  Google Scholar 

  27. Jeschke G (2002) Distance measurements in the nanometer range by pulse EPR. Chemphyschem 3:927–932

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Many have contributed to my limited understanding of the limitations of what we have collectively attempted. Certainly, David Barry, Denise Beusen, Heinz Bosshard, Dick Cramer, Richard Dammkoehler, Wayne Hubbell, Martin Karplus, Charlie Molnar, Phil Needleman, Tudor Oprea, Jay Ponder, Jake Schaefer, Harold Scheraga, Andy Vinter, Svante Wold, and many others (too numerous to mention) have generously pointed out critical mistakes in my thinking along my path to humility. My scientific gratitude to the EPR community whose work on HIV-1 protease has so clearly elucidated the problem. My thanks as well to the modeling community for indulging both my passion and my naivety. If one really knew how difficult was the journey, would one have taken that first step?

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garland R. Marshall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshall, G.R. Limiting assumptions in structure-based design: binding entropy. J Comput Aided Mol Des 26, 3–8 (2012). https://doi.org/10.1007/s10822-011-9494-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-011-9494-1

Keywords

Navigation