Skip to main content

Advertisement

Log in

Thermal Conductivity of Aqueous Sugar Solutions under High Pressure

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 2007

An Erratum to this article was published on 01 August 2007

Abstract

Molecular energy transport in aqueous sucrose and glucose solutions of different mass fractions and temperatures is investigated up to 400 MPa, using the transient hot-wire method. The results reveal an increasing thermal conductivity with increasing pressure and decreasing mass fraction of sugar. No significant differences between sucrose and glucose solutions were observed. Different empirical and semi-empirical relations from the literature are discussed to describe and elucidate the behavior of the solutions with pressure. The pressure-induced change of the thermal conductivity of sugar solutions is mainly caused by an increase of the thermal conductivity and the decrease of molar volume of the water fraction. A simple pressure adapted mass fraction model permits an estimation of the thermal conductivity of the investigated solutions within an uncertainty of about 3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balny C., Masson P., Heremans K. (2002). Biochim. Biophys. Acta 1595: 3

    Google Scholar 

  2. A. Baars, L. Kulisiewicz, R. Gebhardt,W. Doster, A. Delgado, in Proceedings of the 4th International Symposium on the Food Rheology and Structure, ETH Zurich (2006), pp. 283–287

  3. Heremans K., Smeller L. (1998). Biochim. Biophys. Acta 1386: 353

    Google Scholar 

  4. Gaenzle M.G., Ulmer H.M., Vogel R.F. (2001). J. Food Sci. 66: 1174

    Article  Google Scholar 

  5. Indrawati I., Ludikhuyze L.R., van Loey A.M., Hendrickx M.E. (2000). J. Agric. Food Chem. 48: 1850

    Article  Google Scholar 

  6. Bauer B.A., Knorr D. (2005). J. Food Eng. 68: 329

    Article  Google Scholar 

  7. Denys S., van Loey A.M., Hendrickx M.E. (2000). Innov. Food Sci. Emerg. Technol. 1: 5

    Article  Google Scholar 

  8. Pehl M., Delgado A. (1999). Advances in High-pressure Bioscience and Biotechnology. Springer, Heidelberg, 519–522

    Google Scholar 

  9. Pehl M., Delgado A. (2002). Trends in High Pressure Bioscience and Biotechnology. Elsevier, Amsterdam, 429–435

    Book  Google Scholar 

  10. Pehl M., Werner F., Delgado A. (2000). Exp. Fluids 29: 302

    Article  Google Scholar 

  11. Hartmann Chr., Delgado A. (2002). Biotechnol. Bioeng. 79: 94

    Article  Google Scholar 

  12. Delgado A., Hartmann Chr., Winter R. (2003). Advances in High Pressure Bioscience and Biotechnology II. Springer, Berlin, Heidelberg, New York, 459–464

    Google Scholar 

  13. Hartmann Chr., Schuhholz J.P., Kitsubun P., Chapleau N., Le Bail A., Delgado A. (2004). Innov. Food Sci. Emerg. Technol. 5: 399

    Article  Google Scholar 

  14. Bridgman P.W. (1949). The Physics of High Pressure, 2nd edn. G. Bell & Sons, London, 307–329

    Google Scholar 

  15. Lawson A.W., Lowell R., Jain A.L. (1959). J. Chem. Phys. 30: 643

    Article  ADS  Google Scholar 

  16. Kestin J., Sengers J.V., Kamgar-Parsi B., Levelt Sengers J.M.H. (1984). J. Phys. Chem. Ref. Data 13: 175

    Article  ADS  Google Scholar 

  17. IAPWS, Revised Release on the IAPS Formulation 1985 for the Thermal Conductivity of Ordinary Water Substance, vol. 23 (International Association for the Properties of Water and Steam, London, 1998)

  18. Nagasaka Y., Okada H., Suzuki J., Nagashima A. (1983). Ber. Bunsen-Ges. Phys. Chem. 87: 859

    Google Scholar 

  19. Abdulagatov I.M., Magomedov U.B. (1994). Int. J. Thermophys. 15: 401

    Article  Google Scholar 

  20. Abdulagatov I.M., Magomedov U.B. (1999). Int. J. Thermophys. 20: 187

    Article  Google Scholar 

  21. El’darov V.S. (2003). High Temp. 41: 327

    Article  Google Scholar 

  22. Denys S., Hendrickx M.E. (1999). J. Food Sci. 64: 709

    Article  Google Scholar 

  23. Riedel L. (1949). Chem. Eng. Technol. 21: 340

    Google Scholar 

  24. Bubník Z., Kadlec P., Urban D., Bruhns M. (1995). Sugar Technologists Manual. Bartens, Berlin, 155

    Google Scholar 

  25. R. Greger, A. Delgado, H.J. Rath, in Proceedings of the IUTAMSymposiumMicrogravity FluidMechanics (Springer, Berlin, Heidelberg, 1992), pp. 511–515

  26. M. Werner, A. Baars, A. Delgado,6. Dresdner Sensor-Symposium – Sensoren für zukünftige Hochtechnologien und Neuentwicklungen für die Verfahrenstechnik, vol. 20 (W.E.B. Universitätsverlag, Dresden, 2003), p. 37

  27. Ramires M.L.V., Fareleira J.M.N.A., Nieto de Castro C.A., Dix M., Wakeham W.A. (1993). Int. J. Thermophys. 14: 1119

    Google Scholar 

  28. Sigurgeirsson H., Heyes D.M. (2003). Mol. Phys. 101: 469

    Article  ADS  Google Scholar 

  29. R.D. Barbosa, Ph.D. thesis, University of Florida, Gainesville (2003), p. 203

  30. Wagner W., Pruss A. (2002). J. Phys. Chem. Ref. Data 31: 387

    Article  ADS  Google Scholar 

  31. Weber H.F. (1885). Berlin. Ber. 2: 809

    Google Scholar 

  32. Horrocks I.K., McLaughlin E. (1960). Trans. Faraday Soc. 56: 206

    Article  Google Scholar 

  33. Gorbachev M.Yu. (2002). Phys. Chem. Liq. 40: 395

    Article  Google Scholar 

  34. N.B. Vargaftik, Y.P. Os’minin, Teploenergetika 3 (1956)

  35. Bäckström E.H.M., Emblik E. (1965). Kältetechnik. Verlag G. Braun, Karlsruhe, 498

    Google Scholar 

  36. Comini G., Bonacina C., Barina S. (1974). Bull IIR 3: 163

    Google Scholar 

  37. Pandey J.D., Mishra R.K. (2005). Phys. Chem. Liq. 43: 49

    Article  Google Scholar 

  38. Li C.C. (1976). AiChEJ 22: 927

    Article  Google Scholar 

  39. Wilke C.R. (1950). J. Chem. Phys. 18: 577

    Article  Google Scholar 

  40. Rastorguev Yu.L., Ganiev Yu.A. (1968). Inz.-Fiz. Zh. 14: 689

    Google Scholar 

  41. Stippl V.M., Delgado A., Becker T.M. (2004). Innov. Food Sci. Emerg. Technol. 5: 285

    Article  Google Scholar 

  42. C. Eder, A. Delgado, in Proceedings of the 7th International Conference on Optical Technol., Optical Sensors & Measuring Techniques (AMA Service GmbH, Wunstorf, 2006), pp. 3.1–3.6

  43. Emmerich A. (1994). Zuckerindustrie 119: 20

    Google Scholar 

  44. C. Eder, A. Delgado, in Lasermethoden in der Strömungsmesstechnik, 12 Fachtagung, ed. by B. Ruck, A. Leder, D. Dopheide (GALA e.V., Karlsruhe, 2004), pp. 44.1–44.7.

  45. Bettin H., Emmerich A., Spieweck F., Toth H. (1998). Zuckerindustrie 123: 341

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Werner.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10765-007-0295-7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Werner, M., Baars, A., Werner, F. et al. Thermal Conductivity of Aqueous Sugar Solutions under High Pressure. Int J Thermophys 28, 1161–1180 (2007). https://doi.org/10.1007/s10765-007-0221-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-007-0221-z

Keywords

Navigation