Skip to main content
Log in

Does the fish presence influence the diurnal vertical distribution of zooplankton in high transparency lakes?

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The avoidance of visually feeding fish has long been considered as the primary driver of diel vertical migration of zooplankton. The diurnal vertical distribution of Cyclops gr. abyssorum, Arctodiaptomus alpinus, and Daphnia gr. longispina from 13 alpine lakes with fish (Salvelinus fontinalis) and without, was compared in order to understand whether fish in transparent lakes reduce the presence of large zooplankton from the irradiated zone. We used the light level at each sampling depth and the size of each specimen as proxies of predation risk, and we tested two predictions: (P1) the relative abundance of zooplankton in the well-lit surface waters vs. the darker waters will be greater in fishless lakes; (P2) the size of zooplankton in the well-lit surface waters vs. the deeper, darker waters will be greater in fishless lakes. We did not find any evidence of the validity of P1, but we confirmed P2 for Arctodiaptomus alpinus. These results support with new field data the Transparency Regulator Hypothesis, which argues that in transparent lakes, fish predation is less important for the vertical distribution of zooplankton than ultraviolet radiation, and further suggest that zooplankton size rather than vertical distribution may be more effective against visual predators in transparent lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilera, X., G. Crespo, S. Declerck & L. De Meester, 2006. Diel vertical migration of zooplankton in tropical high mountain lakes (Andes, Bolivia). Polish Journal of Ecology 54: 453–464.

    Google Scholar 

  • Bartón, K., 2011. MuMIn: Multi-model inference. R package version 1.6.5. Available at: http://cran.r-project.org/web/packages/MuMIn/index.html. Accessed on 20 March 2012.

  • Brancelj, A., 1999. The extintion of Arctodiaptomus alpinus (Copepoda) following the introduction of charr into a small alpine lake Dvojno Jezero (NW Slovenia). Aquatic Ecology 33: 355–361.

    Article  Google Scholar 

  • Caldwell, M. M., R. Robberecht & W. D. Billings, 1980. A steep latitudinal gradient of solar Ultraviolet-B radiation in the Arctic-Alpine life zone. Ecology 61: 600–611.

    Article  Google Scholar 

  • Compagnoni, R., G. Elter & B. Lombardo, 1974. Eterogeneità stratigrafica del complesso degli “Gneiss Minuti” nel massiccio cristallino del Gran Paradiso. Memorie della Società Geologica Italiana 13: 227–239.

  • Confer, J. L., G. L. Howick, M. H. Corzette, S. L. Kramer, S. Fitzgibbon & R. Landesberg, 1978. Visual predation by planktivores. Oikos 31: 27–37.

    Article  Google Scholar 

  • Dodson, S., 1990. Predicting diel vertical migration of zooplankton. Limnology and Oceanography 35: 1195–1200.

    Article  Google Scholar 

  • Downing, J. A., C. Plante & S. Lalonde, 1990. Fish production correlated with primary productivity, not the Morphoedaphic Index. Canadian Journal of Fisheries and Aquatic Sciences 47: 1929–1936.

    Article  Google Scholar 

  • Eby, L. A., W. J. Roach, L. B. Crowder & J. A. Stanford, 2006. Effects of stocking-up freshwater food webs. Trends in Ecology and Evolution 21: 576–584.

    Article  PubMed  Google Scholar 

  • Edmonson, W. T. & G. G. Wiberg, 1971. A Manual on Methods for the Assessment of Secondary Productivity in fresh Waters. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Fischer, J. M., J. L. Nicolai, C. E. Williamson, A. D. Persaud & R. S. Lockwood, 2006. Effects of ultraviolet radiation on diel vertical migration of crustacean zooplankton: an in situ mesocosm experiment. Hydrobiologia 563: 217–224.

    Article  Google Scholar 

  • Gliwicz, Z. M., 1986. Predation and the evolution of vertical migration in zooplankton. Nature 320: 746–748.

    Article  Google Scholar 

  • Gliwicz, Z. M. & M. G. Rowan, 1984. Survival of Cyclops abyssorum tatricus (Copepoda, Crustacea) in alpine lakes stocked with planktivorous fish. Limnology and Oceanography 29: 1290–1299.

    Article  Google Scholar 

  • Grueber, C. E., S. Nakagawa, R. J. Laws & I. G. Jamieson, 2011. Multimodel inference in ecology and evolution: challenges and solutions. Journal of Evolutionary Biology 24: 699–711.

    Article  PubMed  CAS  Google Scholar 

  • Kessler, K., R. S. Lockwood, C. E. Williamson & J. E. Saros, 2008. Vertical distribution of zooplankton in subalpine and alpine lakes: ultraviolet radiation, fish predation, and the transparency-gradient hypothesis. Limnology and Oceanography 53: 2374–2382.

    Article  Google Scholar 

  • Knapp, R. A., K. R. Matthews & O. Sarnelle, 2001. Resistance and resilience of alpine lake fauna to fish introductions. Ecological Monographs 71: 401–421.

    Article  Google Scholar 

  • Hansson, L. A. & S. Hylander, 2009a. Effects of ultraviolet radiation on pigmentation, photoenzymatic repair, behavior, and community ecology of zooplankton. Photochemical and Photobiological Sciencies 8: 1266–1275.

    Article  CAS  Google Scholar 

  • Hansson, L. A. & S. Hylander, 2009b. Size-structured risk assessments govern Daphnia migration. Proceedings of the Royal Society B 276: 331–336.

    Article  PubMed  Google Scholar 

  • Hansson, L. A., S. Hylander & R. Sommaruga, 2007. Escape from UV threats in zooplankton: a cocktail of behavior and protective pigmentation. Ecology 88: 1932–1939.

    Article  PubMed  Google Scholar 

  • Hargreaves, B. R., S. F. Girdner, M. W. Buktenica, R. W. Collier, E. Urbach & G. L. Larson, 2007. Ultraviolet radiation and bio-optics in Crater Lake, Oregon. Hydrobiologia 574: 107–140.

    Article  Google Scholar 

  • Hays, G. C., A. J. Warner & C. A. Proctor, 1995. Spatio temporal patterns in the diel vertical migration of the copepod Metridia lucens in the northeast Atlantic derived from the Continuous Plankton Recorder survey. Limnology and Oceanography 40: 469–475.

    Article  Google Scholar 

  • Hylander, S., N. Larsson & L. A. Hansson, 2009. Zooplankton vertical migration and plasticity of pigmentation arising from simultaneous UV and predation threats. Limnology and Oceanography 54: 483–491.

    Article  CAS  Google Scholar 

  • Iacobuzio, R. & R. Tiberti, 2011. Cloud cover does not clearly affect the diurnal vertical distribution of crustacean zooplankton in naturally fishless alpine lakes. Plankton and Benthos Research 6: 210–214.

    Article  Google Scholar 

  • Laforsch, C. & R. Tollrian, 2009. Cyclomorphosis and phenotypic changes. In Lickens, G. E. (ed.), Encyclopedia of Inland Waters, Vol. 3. Elsevier, Oxford: 643–650.

    Chapter  Google Scholar 

  • Lampert, W., 1989. The adaptive significance of diel vertical migration of zooplankton. Functional Ecology 3: 21–27.

    Article  Google Scholar 

  • Leech, D. M. & C. E. Williamson, 2000. Is tolerance to UV radiation in zooplankton related to body size, taxon, or lake transparency? Ecological Applications 10: 1530–1540.

    Article  Google Scholar 

  • Leech, D. M. & C. E. Williamson, 2001. In situ exposure to ultraviolet radiation alters the depth distribution of Daphnia. Limnology and Oceanography 46: 416–420.

    Article  Google Scholar 

  • Leech, D. M., C. E. Williamson, R. E. Moeller & B. R. Hargreaves, 2005. Effects of ultraviolet radiation on the seasonal vertical distribution of zooplankton: a database analysis. Archiv für Hydrobiologie 162: 445–464.

    Article  Google Scholar 

  • Leech, D. M., W. J. Boeing, S. L. Cooke, C. E. Williamson & L. Torres, 2009. UV-enhanced fish predation and the differential migration of zooplankton in response to UV radiation and fish. Limnology and Oceanography 54: 1152–1161.

    Article  CAS  Google Scholar 

  • O’Brien, W.J., 1987. Planktivory by freshwater fish: thrust and parry in the pelagia. In Kerfoot, W. C. & A. Sih (eds), Predation. Direct and Indirect Impacts on Acquatic Communities. University Press of New England, Hanover: 3–16.

  • Parker, B. R., D. W. Schindler, D. B. Donald & R. S. Anderson, 2001. The effects of stocking and removal of a nonnative salmonid on the plankton of an alpine lake. Ecosystems 4: 334–345.

    Article  Google Scholar 

  • Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar & the R Development Core Team, 2010. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-97. Available at: http://cran.r-project.org/web/packages/nlme/index.html. Accessed on 20 March 2012.

  • R Development Core Team, 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.r-project.org/. Accessed on 20 March 2012.

  • Rautio, M., A. Korhola & I. D. Zellmer, 2003. Vertical distribution of Daphnia longispina in a shallow subarctic pond: does the interaction of ultraviolet radiation and Chaoborus predation explain the pattern? Polar Biology 26: 659–665.

    Article  Google Scholar 

  • Rhode, S. C., M. Pawlowski & R. Tollrain, 2001. The impact of ultraviolet radiation on the vertical distribution of zooplankton of the genus Daphnia. Nature 412: 69–72.

    Article  PubMed  CAS  Google Scholar 

  • Schabetsberger, R., M. Luger, G. Drozdowski & A. Jagsch, 2009. Only the small survive: monitoring long-term changes in the zooplankton community of an Alpine lake after fish introduction. Biological Invasions 11: 1335–1345.

    Article  Google Scholar 

  • Seckmeyer, G., B. Mayer, R. Erb & G. Bernhard, 1994. UV-B in Germany higher in 1993 than in 1992. Geophysical Research Letters 21: 577–580.

    Article  CAS  Google Scholar 

  • Stich, H. B. & W. Lampert, 1981. Predator evasion as an explanation of diurnal vertical migration by zooplankton. Nature 293: 396–398.

    Article  Google Scholar 

  • Tiberti, R., 2012. Ecology of alpine lakes in Gran Paradiso National Park. PhD Thesis, University of Pavia, Pavia.

  • Tiberti, R. & M. Barbieri, 2011. Evidences of zooplankton vertical migration in stocked and never stocked alpine lakes in Gran Paradiso National Park (Italy). Oceanological and Hydrobiological Studies 40: 36–42.

    Article  Google Scholar 

  • Tiberti, R., G. A. Tartari & A. Marchetto, 2010. Geomorphology and hydrochemistry of 12 Alpine lakes in the Gran Paradiso National Park, Italy. Journal of Limnology 69: 242–256.

    Article  Google Scholar 

  • Tollrain, R. & C. D. Harvell, 1999. The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton.

    Google Scholar 

  • Vinyard, G. L. & W. J. O’Brien, 1976. Effects of Light and Turbidity on the Reactive Distance of Bluegill Sunfish (Lepomis macrochirus). Journal of the Fisheries Research Board of Canada 33: 2845–2849.

    Article  Google Scholar 

  • Williamson, C. E. & P. J. Neale, 2009. Ultraviolet light. In Lickens, G. E. (ed.), Encylopedia of Inland Waters. Elsevier, Amsterdam: 705–714.

    Chapter  Google Scholar 

  • Williamson, C. E., O. G. Olson, S. E. Lott, N. D. Walker, D. R. Engstrom & B. R. Hargreaves, 2001. Ultraviolet radiation and zooplankton community structure following deglaciation in Glacier Bay, Alaska. Ecology 82: 1748–1749.

    Article  Google Scholar 

  • Williamson, C. E., J. M. Fischer, S. M. Bollens, E. P. Overholt & J. K. Breckenridge, 2011. Toward a more comprehensive theory of zooplankton diel vertical migration: integrating ultraviolet radiation and water transparency into the biotic paradigm. Limnology and Oceanography 56: 1603–1623.

    Article  Google Scholar 

  • Wright, D. I. & W. J. O’Brien, 1984. The development and field test of the tactical model of the planktivorous feeding of White crappie (Promoxis annularis). Ecological Monographs 54: 65–98.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Achaz von Hardenberg, Bruno Bassano (Gran Paradiso National Park), and Giuseppe Bogliani (University of Pavia) for their support and contributions to the research program. We thank Cristiana Callieri and Roberto Bertone (ISE-CNR) for lending us the light meter, and Andrew Sturgeon for his kind revision of the manuscript. Logistic support and funding for this research was provided by the Gran Paradiso National Park within the framework of the FP7 ACQWA Project (Assessment of Climatic change and impacts on the Quantity and quality of Water), Grant Agreement No. 212250.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocco Tiberti.

Additional information

Handling editor: Boping Han

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiberti, R., Iacobuzio, R. Does the fish presence influence the diurnal vertical distribution of zooplankton in high transparency lakes?. Hydrobiologia 709, 27–39 (2013). https://doi.org/10.1007/s10750-012-1405-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1405-5

Keywords

Navigation