Skip to main content

Advertisement

Log in

Canonical and non-canonical Wnt signaling control the regeneration of amputated rodent vibrissae follicles

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Although mammals are notoriously poor at regeneration compared with many lower-order species, the hair follicle, particular to mammals, is capable of regeneration following partial amputation. The detailed internal mechanism of this phenomenon is still unclear. Development and regrowth of the hair follicle depends on dermal-epidermal interaction within the hair follicle. Previous studies have shown that Wnt/β-catenin, Shh, Bmp, PDGF, TGF and Notch signals all take part in the development and growth of the hair follicle, and the Wnt/β-catenin signaling additionally plays an indispensable role in hair follicle morphogenesis and regrowth. In this study, we investigated the localization, as well as, protein levels of Wnt/β-catenin signaling molecules during amputated whisker follicle regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DP:

Dermal papilla

DS:

Dermal sheath

HS:

Hair shaft

IRS:

Inner root sheath

Mx:

Matrix

ORS:

Outer root sheath

References

  • Andl T, Reddy ST et al (2002) WNT signals are required for the initiation of hair follicle development. Dev Cell 2(5):643–653

    Article  PubMed  CAS  Google Scholar 

  • Fang DR, Lv ZF et al (2014) Dynamic Wnt5a expression in murine hair follicle cycle and its inhibitory effects on follicular. Asian Pac J Trop Med 7(4):285–288

    Article  PubMed  CAS  Google Scholar 

  • Gurtner GC, Werner S et al (2008) Wound repair and regeneration. Nature 453(7193):314–321

    Article  PubMed  CAS  Google Scholar 

  • Iida M, Ihara S et al (2007) Follicular epithelia and dermal papillae of mouse vibrissal follicles qualitatively change their hair-forming ability during anagen. Differentiation 75(5):371–381

    Article  PubMed  CAS  Google Scholar 

  • Jahoda CA, Horne KA et al (1992) Cellular and extracellular involvement in the regeneration of the rat lower vibrissa follicle. Development 114(4):887–897

    PubMed  CAS  Google Scholar 

  • Kobayashi K, Nishimura E (1989) Ectopic growth of mouse whiskers from implanted lengths of plucked vibrissa follicles. J Invest Dermatol 92(2):278–282

    Article  PubMed  CAS  Google Scholar 

  • Kwack MH, Kim MK et al (2012) Dickkopf 1 promotes regression of hair follicles. J Invest Dermatol 132(6):1554–1560

    Article  PubMed  CAS  Google Scholar 

  • Larouche D, Tong X et al (2008) Vibrissa hair bulge houses two populations of skin epithelial stem cells distinct by their keratin profile. FASEB J 22(5):1404–1415

    Article  PubMed  CAS  Google Scholar 

  • Lavker RM, Sun TT (2000) Epidermal stem cells: properties, markers, and location. Proc Natl Acad Sci U S A 97(25):13473–13475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li YH, Zhang K et al (2011) Wnt10b promotes growth of hair follicles via a canonical Wnt signalling pathway. Clin Exp Dermatol 36(5):534–540

    Article  PubMed  Google Scholar 

  • Li YH, Zhang K et al (2013) Adenovirus-mediated Wnt10b overexpression induces hair follicle regeneration. J Invest Dermatol 133(1):42–48

    Article  PubMed  CAS  Google Scholar 

  • Lin CM, Yuan YP et al. (2015) Expression of Wnt/beta-catenin signaling, stem-cell markers and proliferating cell markers in rat whisker hair follicles. J Mol Histol

  • Millar SE (2002) Molecular mechanisms regulating hair follicle development. J Investig Dermatol 118(2):216–225

    Article  PubMed  CAS  Google Scholar 

  • Oliver RF (1991) Dermal-epidermal interactions and hair growth. J Invest Dermatol 96(5):76S

    Article  PubMed  CAS  Google Scholar 

  • Plikus MV (2014) At the dawn of hair research—testing the limits of hair follicle regeneration. Exp Dermatol

  • Poblet E, Jimenez F (2003) CD34 in human hair follicle. J Invest Dermatol 121(5):1220 author reply 1220-1221

    Article  PubMed  CAS  Google Scholar 

  • Poblet E, Jimenez F (2008) CD10 and CD34 in fetal and adult human hair follicles: dynamic changes in their immunohistochemical expression during embryogenesis and hair cycling. Br J Dermatol 159(3):646–652

    Article  PubMed  CAS  Google Scholar 

  • Poblet E, Jimenez F et al (2006) The immunohistochemical expression of CD34 in human hair follicles: a comparative study with the bulge marker CK15. Clin Exp Dermatol 31(6):807–812

    Article  PubMed  CAS  Google Scholar 

  • Reddy S, Andl T et al (2001) Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech Dev 107(1–2):69–82

    Article  PubMed  CAS  Google Scholar 

  • Stenn KS, Paus R (2001) Controls of hair follicle cycling. Physiol Rev 81(1):449–494

    PubMed  CAS  Google Scholar 

  • Sun G, Irvine KD (2014) Control of growth during regeneration. Curr Top Dev Biol 108:95–120

    Article  PubMed  CAS  Google Scholar 

  • Sun TT, Cotsarelis G et al (1991) Hair follicular stem cells: the bulge-activation hypothesis. J Invest Dermatol 96(5):77S–78S

    Article  PubMed  CAS  Google Scholar 

  • Wang HD, Yang L et al (2012) Immunolocalization of beta-catenin and Lef-1 during postnatal hair follicle development in mice. Acta Histochem 114(8):773–778

    Article  PubMed  CAS  Google Scholar 

  • Waters JM, Cowin AJ (2013) Lower vibrissa follicle amputation: a mammalian model of regeneration. Methods Mol Biol 1037:437–448

    Article  PubMed  Google Scholar 

  • Xing Y, Xu W et al (2011) Immunolocalization of Wnt5a during the hair cycle and its role in hair shaft growth in mice. Acta Histochem 113(6):608–612

    Article  PubMed  CAS  Google Scholar 

  • Xing YZ, Wang RM et al (2013) Adenovirus-mediated wnt5a expression inhibits the telogen-to-anagen transition of hair follicles in mice. Int J Med Sci 10(7):908–914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Young RD, Oliver RF (1976) Morphological changes associated with the growth cycle of vibrissal follicles in the rat. J Embryol Exp Morphol 36(3):597–607

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Science Foundation of China (Nos. 81372084, 81171832) and Guangdong Province Outstanding Young Teacher Training Program (No. Yq2013078) and Guangdong Scientific Research Funding Program (No. 2014A020211024). Dr. Stanley Lin is very appreciated for editing the language for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Min Lin.

Additional information

Yan-Ping Yuan and Keng Huang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, YP., Huang, K., Xu, YM. et al. Canonical and non-canonical Wnt signaling control the regeneration of amputated rodent vibrissae follicles. J Mol Hist 47, 1–8 (2016). https://doi.org/10.1007/s10735-015-9648-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-015-9648-x

Keywords

Navigation