Skip to main content

Advertisement

Log in

Aquaporins are upregulated in glandular epithelium at the time of implantation in the rat

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Regulation of luminal fluid is essential for blastocyst implantation. While it has been known for quite some time that there is a reduction in the amount of luminal fluid at the time of implantation, the mechanisms regulating this process are only just emerging. Previous studies have shown an upregulation of aquaporin (AQP) 5 channels in luminal epithelial cells at the time of implantation providing a mechanism for fluid reabsorption across the surface epithelium. However to date the contribution of fluid reabsorption by glandular epithelial cells has not been established. This study using reverse transcriptase polymerase chain reaction demonstrates the presence of several AQP isoforms in the rat uterus at the time of implantation while immunofluorescence data demonstrates an apical distribution of AQPs5 and 9 in the glandular epithelium at the time of implantation. The presence of AQPs5 and 9 in the apical plasma membrane of the glandular epithelium seen in this study provides a mechanism for transcellular fluid transport across these glandular epithelial cells similar to that seen in luminal epithelial cells. The reabsorption of glandular fluid via AQP channels may also regulate luminal fluid volume and be involved in the reduction in luminal fluid seen at the time of implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akman MA, Erden HF, Bahceci M (2005) Endometrial fluid visualized through ultrasonography during ovarian stimulation in IVF cycles impairs the outcome in tubal factor, but not PCOS, patients. Hum Reprod 20:906–909

    Article  PubMed  Google Scholar 

  • Anderson JN, Clark JH, Peck EJ Jr (1972) The relationship between nuclear receptor-estrogen binding and uterotrophic responses. Biochem Biophys Res Commun 48:1460–1468

    Article  PubMed  CAS  Google Scholar 

  • Borgnia M, Nielsen S, Engel A, Agre P (1999) Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem 68:425–458

    Article  PubMed  CAS  Google Scholar 

  • Damiano AE, Zotta E, Ibarra C (2006) Functional and molecular expression of AQP9 channel and UT-A transporter in normal and preeclamptic human placentas. Placenta 27:1073–1081

    Article  PubMed  CAS  Google Scholar 

  • Enders A, Schlafke S (1967) A morphological analysis of the early implantation stages in the rat. Am J Anat 120:185–225

    Article  Google Scholar 

  • Fujita A, Horio Y, Nielsen S, Nagelhus EA, Hata F, Ottersen OP, Kurachi Y (1999) High-resolution immunogold cytochemistry indicates that AQP4 is concentrated along the basal membrane of parietal cell in rat stomach. FEBS Lett 459:305–309

    Article  PubMed  CAS  Google Scholar 

  • Given RL, Enders AC (1981) Mouse uterine glands during the peri-implantation period. II. Autoradiographic studies. Anat Rec 199:109–127

    Article  PubMed  CAS  Google Scholar 

  • He RH, Sheng JZ, Luo Q, Jin F, Wang B, Qian YL, Zhou CY, Sheng X, Huang HF (2006) Aquaporin-2 expression in human endometrium correlates with serum ovarian steroid hormones. Life Sci 79:423–429

    Article  PubMed  CAS  Google Scholar 

  • Hildenbrand A, Lalitkumar L, Nielsen S, Gemzell-Danielsson K, Stavreus-Evers A (2006) Expression of aquaporin 2 in human endometrium. Fertil Steril 86:1452–1458

    Article  PubMed  CAS  Google Scholar 

  • Jablonski EM, McConnell NA, Hughes FM Jr, Huet-Hudson YM (2003) Estrogen regulation of aquaporins in the mouse uterus: potential roles in uterine water movement. Biol Reprod 69:1481–1487

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Takahashi E, Miyagawa S, Watanabe H, Iguchi T (2006) Chromatin immunoprecipitation-mediated target identification proved aquaporin 5 is regulated directly by estrogen in the uterus. Genes Cells 11:1133–1143

    Article  PubMed  CAS  Google Scholar 

  • Li X, Yu H, Koide SS (1994) The water channel gene in human uterus. Biochem Mol Biol Int 32:371–377

    PubMed  CAS  Google Scholar 

  • Lindsay LA, Murphy CR (2004a) Aquaporin-1 increases in the rat myometrium during early pregnancy. J Mol Histol 35:75–79

    Article  CAS  Google Scholar 

  • Lindsay LA, Murphy CR (2004b) Redistribution of aquaporins in uterine epithelial cells at the time of implantation in the rat. Acta Histochem 106:299–307

    Article  CAS  Google Scholar 

  • Lindsay LA, Murphy CR (2006) Redistribution of aquaporins 1 and 5 in the rat uterus is dependent on progesterone: a study with light and electron microscopy. Reproduction 131:369–378

    Article  PubMed  CAS  Google Scholar 

  • Ljungkvist I (1971a) Attachment reaction of rat uterine luminal epithelium. II. The effect of progesterone on the morphology of the uterine glands and the luminal epithelium of the spayed, virgin rat. Acta Soc Med Ups 76:110–126

    CAS  Google Scholar 

  • Ljungkvist I (1971b) Attachment reaction of rat uterine luminal epithelium. III. The effect of estradiol, estrone and estriol on the morphology of the luminal epithelium of the spayed, virgin rat. Acta Soc Med Ups 76:139–157

    CAS  Google Scholar 

  • Ljungkvist I (1972) Attachment reaction of rat uterine luminal epithelium. IV. The cellular changes in the attachment reaction and its hormonal regulation. Fertil Steril 23:847–865

    PubMed  CAS  Google Scholar 

  • Ma T, Yang B, Verkman AS (1997) Cloning of a novel water and urea-permeable aquaporin from mouse expressed strongly in colon, placenta, liver, and heart. Biochem Biophys Res Commun 240:324–328

    Article  PubMed  CAS  Google Scholar 

  • Matthews CJ, Thomas EJ, Redfern CP, Hirst BH (1993) Ion transport by human endometrial epithelia in vitro. Hum Reprod 8:1570–1575

    PubMed  CAS  Google Scholar 

  • Mobasheri A, Wray S, Marples D (2005) Distribution of AQP2 and AQP3 water channels in human tissue microarrays. J Mol Histol 36:1–14

    Article  PubMed  CAS  Google Scholar 

  • Naftalin RJ, Thiagarajah JR, Pedley KC, Pocock VJ, Milligan SR (2002) Progesterone stimulation of fluid absorption by the rat uterine gland. Reproduction 123:633–638

    Article  PubMed  CAS  Google Scholar 

  • Offenberg H, Barcroft LC, Caveney A, Viuff D, Thomsen PD, Watson AJ (2000) mRNAs encoding aquaporins are present during murine preimplantation development. Mol Reprod Dev 57:323–330

    Article  PubMed  CAS  Google Scholar 

  • Parvin MN, Tsumura K, Akamatsu T, Kanamori N, Hosoi K (2002) Expression and localisation of AQP5 in the stomach and duodenum of the rat. Biochim Biophys Acta 1542:116–124

    Article  PubMed  CAS  Google Scholar 

  • Richard C, Gao J, Brown N, Reese J (2003) Aquaporin water channel genes are differentially expressed and regulated by ovarian steroids during the periimplantation period in the mouse. Endocrinology 144:1533–1541

    Article  PubMed  CAS  Google Scholar 

  • Verkman AS, Mitra AK (2000) Structure and function of aquaporin water channels. Am J Physiol Renal Physiol 278:F13–F28

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura A. Lindsay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindsay, L.A., Murphy, C.R. Aquaporins are upregulated in glandular epithelium at the time of implantation in the rat. J Mol Hist 38, 87–95 (2007). https://doi.org/10.1007/s10735-007-9083-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-007-9083-8

Keywords

Navigation