Skip to main content
Log in

Glycans define the stemness of naïve and primed pluripotent stem cells

  • Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Cell surface glycans are tissue-specific and developmentally regulated. They function as essential modulators in cell-cell interactions, cell-extracellular matrix interactions, and ligand-receptor interactions, binding to various ligands, including Wnt, fibroblast growth factors, and bone morphogenetic proteins. Embryonic stem (ES) cells, originally derived from the inner cell mass of blastocysts, have the essential characteristics of pluripotency and self-renewal. Recently, it has been proposed that mouse and human conventional ES cells are present in different developmental stages, namely pre-implantation blastocyst and post-implantation blastocyst stages, also called the naïve state and the primed state, respectively. They therefore require different extrinsic signals for the maintenance of self-renewal and pluripotency, and also appear to require different surface glycans. Understanding of molecular mechanisms involving glycans in self-renewal and pluripotency of ES cells is increasingly important for potential clinical applications, as well as for basic research. This review focuses on the roles of glycans in the two different states of pluripotent stem cells, namely the naïve state and the primed state, and the transition between these two states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Evans M.J., Kaufman M.H.: Establishment in culture of pluripotential cells from mouse embryos. Nature. 292, 154–156 (1981)

    Article  CAS  PubMed  Google Scholar 

  2. Martin G.R.: Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. U. S. A. 78, 7634–7638 (1981)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thompson S., Clarke A.R., Pow A.M., Hooper M.L., Melton D.W.: Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell. 56, 313–321 (1989)

    Article  CAS  PubMed  Google Scholar 

  4. Thomson J.A., Itskovitz-Eldor J., Shapiro S.S., Waknitz M.A., Swiergiel J.J., Marshall V.S., Jones J.M.: Embryonic stem cell lines derived from human blastocysts. Science. 282, 1145–1147 (1998)

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi K., Yamanaka S.: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126, 663–676 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S.: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131, 861–872 (2007)

    Article  CAS  PubMed  Google Scholar 

  7. Yu J., Vodyanik M.A., Smuga-Otto K., Antosiewicz-Bourget J., Frane J.L., Tian S., Nie J., Jonsdottir G.A., Ruotti V., Stewart R., Slukvin I.I., Thomson J.A.: Induced pluripotent stem cell lines derived from human somatic cells. Science. 318, 1917–1920 (2007)

    Article  CAS  PubMed  Google Scholar 

  8. Gibney E., Ledford H., Lok C., Hayden E.C., Cowen R., Klarreich E., Reardon S., Padma T.V., Cyranoski D., Callaway E.: 365 days: Nature's 10. Ten people who mattered this year. Nature. 516, 311–319 (2014)

    Google Scholar 

  9. Kamao H., Mandai M., Okamoto S., Sakai N., Suga A., Sugita S., Kiryu J., Takahashi M.: Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Reports. 2, 205–218 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Atwood 3rd J.A., Cheng L., Alvarez-Manilla G., Warren N.L., York W.S., Orlando R.: Quantitation by isobaric labeling: applications to glycomics. J. Proteome Res. 7, 367–374 (2008)

    Article  CAS  PubMed  Google Scholar 

  11. Muramatsu T., Muramatsu H.: Carbohydrate antigens expressed on stem cells and early embryonic cells. Glycoconj. J. 21, 41–45 (2004)

    Article  CAS  PubMed  Google Scholar 

  12. Adewumi O., Aflatoonian B., Ahrlund-Richter L., Amit M., Andrews P.W., Beighton G., Bello P.A., Benvenisty N., Berry L.S., Bevan S., Blum B., Brooking J., Chen K.G., Choo A.B., Churchill G.A., Corbel M., Damjanov I., Draper J.S., Dvorak P., Emanuelsson K., Fleck R.A., Ford A., Gertow K., Gertsenstein M., Gokhale P.J., Hamilton R.S., Hampl A., Healy L.E., Hovatta O., Hyllner J., Imreh M.P., Itskovitz-Eldor J., Jackson J., Johnson J.L., Jones M., Kee K., King B.L., Knowles B.B., Lako M., Lebrin F., Mallon B.S., Manning D., Mayshar Y., McKay R.D., Michalska A.E., Mikkola M., Mileikovsky M., Minger S.L., Moore H.D., Mummery C.L., Nagy A., Nakatsuji N., O'Brien C.M., Oh S.K., Olsson C., Otonkoski T., Park K.Y., Passier R., Patel H., Patel M., Pedersen R., Pera M.F., Piekarczyk M.S., Pera R.A., Reubinoff B.E., Robins A.J., Rossant J., Rugg-Gunn P., Schulz T.C., Semb H., Sherrer E.S., Siemen H., Stacey G.N., Stojkovic M., Suemori H., Szatkiewicz J., Turetsky T., Tuuri T., van den Brink S., Vintersten K., Vuoristo S., Ward D., Weaver T.A., Young L.A., Zhang W.: Characterization of human embryonic stem cell lines by the international stem cell initiative. Nat. Biotechnol. 25, 803–816 (2007)

    Article  CAS  PubMed  Google Scholar 

  13. Kawabe K., Tateyama D., Toyoda H., Kawasaki N., Hashii N., Nakao H., Matsumoto S., Nonaka M., Matsumura H., Hirose Y., Morita A., Katayama M., Sakuma M., Kawasaki N., Furue M.K., Kawasaki T.: A novel antibody for human induced pluripotent stem cells and embryonic stem cells recognizes a type of keratan sulfate lacking oversulfated structures. Glycobiology. 23, 322–336 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. Matsumoto S., Nakao H., Kawabe K., Nonaka M., Toyoda H., Takishima Y., Kawabata K., Yamaguchi T., Furue M.K., Taki T., Okumura T., Yamazaki Y., Nakaya S., Kawasaki N., Kawasaki T.: A cytotoxic antibody recognizing lacto-N-fucopentaose I (LNFP I) on human induced pluripotent stem (hiPS) cells. J. Biol. Chem. 290, 20071–20085 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tateno H., Toyota M., Saito S., Onuma Y., Ito Y., Hiemori K., Fukumura M., Matsushima A., Nakanishi M., Ohnuma K., Akutsu H., Umezawa A., Horimoto K., Hirabayashi J., Asashima M.: Glycome diagnosis of human induced pluripotent stem cells using lectin microarray. J. Biol. Chem. 286, 20345–20353 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tang C., Lee A.S., Volkmer J.P., Sahoo D., Nag D., Mosley A.R., Inlay M.A., Ardehali R., Chavez S.L., Pera R.R., Behr B., Wu J.C., Weissman I.L., Drukker M.: An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat. Biotechnol. 29, 829–834 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fujitani N., Furukawa J., Araki K., Fujioka T., Takegawa Y., Piao J., Nishioka T., Tamura T., Nikaido T., Ito M., Nakamura Y., Shinohara Y.: Total cellular glycomics allows characterizing cells and streamlining the discovery process for cellular biomarkers. Proc. Natl. Acad. Sci. U. S. A. 110, 2105–2110 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weinberger L., Ayyash M., Novershtern N., Hanna J.H.: Dynamic stem cell states: naïve to primed pluripotency in rodents and humans. Nat Rev Mol Cell Biol. 17, 155–169 (2016)

    Article  CAS  PubMed  Google Scholar 

  19. Martello G., Smith A.: The nature of embryonic stem cells. Annu. Rev. Cell Dev. Biol. 30, 647–675 (2014)

    Article  CAS  PubMed  Google Scholar 

  20. Tesar P.J., Chenoweth J.G., Brook F.A., Davies T.J., Evans E.P., Mack D.L., Gardner R.L., McKay R.D.: New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature. 448, 196–199 (2007)

    Article  CAS  PubMed  Google Scholar 

  21. Brons I.G., Smithers L.E., Trotter M.W., Rugg-Gunn P., Sun B.: Chuva de Sousa lopes, S.M., Howlett, S.K., Clarkson, a., Ahrlund-Richter, L., Pedersen, R.A., Vallier, L.: Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature. 448, 191–195 (2007)

    Article  CAS  PubMed  Google Scholar 

  22. Nichols J., Smith A.: Naïve and primed pluripotent states. Cell Stem Cell. 4, 487–492 (2009)

    Article  CAS  PubMed  Google Scholar 

  23. Leitch H.G., McEwen K.R., Turp A., Encheva V., Carroll T., Grabole N., Mansfield W., Nashun B., Knezovich J.G., Smith A., Surani M.A., Hajkova P.: Naïve pluripotency is associated with global DNA hypomethylation. Nat. Struct. Mol. Biol. 20, 311–316 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gafni O., Weinberger L., Mansour A.A., Manor Y.S., Chomsky E., Ben-Yosef D., Kalma Y., Viukov S., Maza I., Zviran A., Rais Y., Shipony Z., Mukamel Z., Krupalnik V., Zerbib M., Geula S., Caspi I., Schneir D., Shwartz T., Gilad S., Amann-Zalcenstein D., Benjamin S., Amit I., Tanay A., Massarwa R., Novershtern N., Hanna J.H.: Derivation of novel human ground state naïve pluripotent stem cells. Nature. 504, 282–286 (2013)

    Article  CAS  PubMed  Google Scholar 

  25. Zhou W., Choi M., Margineantu D., Margaretha L., Hesson J., Cavanaugh C., Blau C.A., Horwitz M.S., Hockenbery D., Ware C., Ruohola-Baker H.: HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J. 31, 2103–2116 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boeuf H., Hauss C., Graeve F.D., Baran N., Kedinger C.: Leukemia inhibitory factor-dependent transcriptional activation in embryonic stem cells. J. Cell Biol. 138, 1207–1217 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Daheron L., Opitz S.L., Zaehres H., Lensch M.W., Andrews P.W., Itskovitz-Eldor J., Daley G.Q.: LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells. 22, 770–778 (2004)

    Article  CAS  PubMed  Google Scholar 

  28. Niwa H., Ogawa K., Shimosato D., Adachi K.: A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature. 460, 118–122 (2009)

    Article  CAS  PubMed  Google Scholar 

  29. Nicola N.A., Babon J.J.: Leukemia inhibitory factor (LIF). Cytokine Growth Factor Rev. 26, 533–544 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ohtsuka S., Nakai-Futatsugi Y., Niwa H.: LIF signal in mouse embryonic stem cells. JAKSTAT. 4, e1086520 (2015)

    PubMed  PubMed Central  Google Scholar 

  31. Martello G., Bertone P., Smith A.: Identification of the missing pluripotency mediator downstream of leukaemia inhibitory factor. EMBO J. 32, 2561–2574 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martello G., Sugimoto T., Diamanti E., Joshi A., Hannah R., Ohtsuka S., Gottgens B., Niwa H., Smith A.: Esrrb is a pivotal target of the Gsk3/Tcf3 axis regulating embryonic stem cell self-renewal. Cell Stem Cell. 11, 491–504 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ying Q.L., Nichols J., Chambers I., Smith A.: BMP induction of id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell. 115, 281–292 (2003)

    Article  CAS  PubMed  Google Scholar 

  34. Li Z., Fei T., Zhang J., Zhu G., Wang L., Lu D., Chi X., Teng Y., Hou N., Yang X., Zhang H., Han J.D., Chen Y.G.: BMP4 signaling acts via dual-specificity phosphatase 9 to control ERK activity in mouse embryonic stem cells. Cell Stem Cell. 10, 171–182 (2012)

    Article  CAS  PubMed  Google Scholar 

  35. Morikawa M., Koinuma D., Mizutani A., Kawasaki N., Holmborn K., Sundqvist A., Tsutsumi S., Watabe T., Aburatani H., Heldin C.H., Miyazono K.: BMP sustains embryonic stem cell self-renewal through distinct functions of different Kruppel-like factors. Stem Cell Reports. 6, 64–73 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hikasa H., Ezan J., Itoh K., Li X., Klymkowsky M.W., Sokol S.Y.: Regulation of TCF3 by Wnt-dependent phosphorylation during vertebrate axis specification. Dev. Cell. 19, 521–532 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Niwa H.: The pluripotency transcription factor network at work in reprogramming. Curr Opin Genet Dev. 28, 25–31 (2014)

    Article  CAS  PubMed  Google Scholar 

  38. Ogawa K., Nishinakamura R., Iwamatsu Y., Shimosato D., Niwa H.: Synergistic action of Wnt and LIF in maintaining pluripotency of mouse ES cells. Biochem. Biophys. Res. Commun. 343, 159–166 (2006)

    Article  CAS  PubMed  Google Scholar 

  39. Kunath T., Saba-El-Leil M.K., Almousailleakh M., Wray J., Meloche S., Smith A.: FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development. 134, 2895–2902 (2007)

    Article  CAS  PubMed  Google Scholar 

  40. Stavridis M.P., Lunn J.S., Collins B.J., Storey K.G.: A discrete period of FGF-induced Erk1/2 signalling is required for vertebrate neural specification. Development. 134, 2889–2894 (2007)

    Article  CAS  PubMed  Google Scholar 

  41. Lanner F., Rossant J.: The role of FGF/Erk signaling in pluripotent cells. Development. 137, 3351–3360 (2010)

    Article  CAS  PubMed  Google Scholar 

  42. James D., Levine A.J., Besser D., Hemmati-Brivanlou A.: TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development. 132, 1273–1282 (2005)

    Article  CAS  PubMed  Google Scholar 

  43. Xu R.H., Chen X., Li D.S., Li R., Addicks G.C., Glennon C., Zwaka T.P., Thomson J.A.: BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat. Biotechnol. 20, 1261–1264 (2002)

    Article  CAS  PubMed  Google Scholar 

  44. Vallier L., Alexander M., Pedersen R.A.: Activin/nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J. Cell Sci. 118, 4495–4509 (2005)

    Article  CAS  PubMed  Google Scholar 

  45. Greber B., Lehrach H., Adjaye J.: Fibroblast growth factor 2 modulates transforming growth factor β signaling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewal. Stem Cells. 25, 455–464 (2007)

    Article  CAS  PubMed  Google Scholar 

  46. Li J., Wang G., Wang C., Zhao Y., Zhang H., Tan Z., Song Z., Ding M., Deng H.: MEK/ERK signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation. 75, 299–307 (2007)

    Article  CAS  PubMed  Google Scholar 

  47. Huang T.S., Li L., Moalim-Nour L., Jia D., Bai J., Yao Z., Bennett S.A., Figeys D., Wang L.: A regulatory network involving β-catenin, E-cadherin, PI3k/Akt, and slug balances self-renewal and differentiation of human pluripotent stem cells in response to Wnt signaling. Stem Cells. 33, 1419–1433 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guo G., Yang J., Nichols J., Hall J.S., Eyres I., Mansfield W., Smith A.: Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development. 136, 1063–1069 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hanna J., Cheng A.W., Saha K., Kim J., Lengner C.J., Soldner F., Cassady J.P., Muffat J., Carey B.W., Jaenisch R.: Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs. Proc. Natl. Acad. Sci. U. S. A. 107, 9222–9227 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhou H., Li W., Zhu S., Joo J.Y., Do J.T., Xiong W., Kim J.B., Zhang K., Scholer H.R., Ding S.: Conversion of mouse epiblast stem cells to an earlier pluripotency state by small molecules. J. Biol. Chem. 285, 29676–29680 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Takashima Y., Guo G., Loos R., Nichols J., Ficz G., Krueger F., Oxley D., Santos F., Clarke J., Mansfield W., Reik W., Bertone P., Smith A.: Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell. 158, 1254–1269 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Guo G., von Meyenn F., Santos F., Chen Y., Reik W., Bertone P., Smith A., Nichols J.: Naïve pluripotent stem cells derived directly from isolated cells of the human inner cell mass. Stem Cell Reports. 6, 437–446 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Theunissen T.W., Powell B.E., Wang H., Mitalipova M., Faddah D.A., Reddy J., Fan Z.P., Maetzel D., Ganz K., Shi L., Lungjangwa T., Imsoonthornruksa S., Stelzer Y., Rangarajan S., D'Alessio A., Zhang J., Gao Q., Dawlaty M.M., Young R.A., Gray N.S., Jaenisch R.: Systematic identification of culture conditions for induction and maintenance of naïve human pluripotency. Cell Stem Cell. 15, 471–487 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pastor W.A., Chen D., Liu W., Kim R., Sahakyan A., Lukianchikov A., Plath K., Jacobsen S.E., Clark A.T.: Naïve human pluripotent cells feature a methylation landscape devoid of clastocyst or germline memory. Cell Stem Cell. 18, 323–329 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang Y., Gao S.: Human naïve embryonic stem cells: how full is the glass? Cell Stem Cell. 18, 301–303 (2016)

    Article  CAS  PubMed  Google Scholar 

  56. Muramatsu H., Kusano T., Sato M., Oda Y., Kobori K., Muramatsu T.: Embryonic stem cells deficient in I β1,6-N-acetylglucosaminyltransferase exhibit reduced expression of embryoglycan and the loss of a Lewis X antigen, 4C9. Glycobiology. 18, 242–249 (2008)

    Article  CAS  PubMed  Google Scholar 

  57. Kannagi R., Cochran N.A., Ishigami F., Hakomori S., Andrews P.W., Knowles B.B., Solter D.: Stage-specific embryonic antigens (SSEA-3 and −4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J. 2, 2355–2361 (1983)

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Natunen S., Satomaa T., Pitkanen V., Salo H., Mikkola M., Natunen J., Otonkoski T., Valmu L.: The binding specificity of the marker antibodies Tra-1-60 and Tra-1-81 reveals a novel pluripotency-associated type 1 lactosamine epitope. Glycobiology. 21, 1125–1130 (2011)

    Article  CAS  PubMed  Google Scholar 

  59. Liang Y.J., Kuo H.H., Lin C.H., Chen Y.Y., Yang B.C., Cheng Y.Y., Yu A.L., Khoo K.H., Yu J.: Switching of the core structures of glycosphingolipids from globo- and lacto- to ganglio-series upon human embryonic stem cell differentiation. Proc. Natl. Acad. Sci. U. S. A. 107, 22564–22569 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sasaki N., Shinomi M., Hirano K., Ui-Tei K., Nishihara S.: LacdiNAc (GalNAcβ1-4GlcNAc) contributes to self-renewal of mouse embryonic stem cells by regulating leukemia inhibitory factor/STAT3 signaling. Stem Cells. 29, 641–650 (2011)

    Article  CAS  PubMed  Google Scholar 

  61. Manzella S.M., Hooper L.V., Baenziger J.U.: Oligosaccharides containing β1,4-linked N-acetylgalactosamine, a paradigm for protein-specific glycosylation. J. Biol. Chem. 271, 12117–12120 (1996)

    Article  CAS  PubMed  Google Scholar 

  62. Breloy I., Sote S., Ottis P., Bonar D., Grahn A., Hanisch F.G.: O-linked LacdiNAc-modified glycans in extracellular matrix glycoproteins are specifically phosphorylated at the subterminal GlcNAc. J. Biol. Chem. 287, 18275–18286 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sato T., Gotoh M., Kiyohara K., Kameyama A., Kubota T., Kikuchi N., Ishizuka Y., Iwasaki H., Togayachi A., Kudo T., Ohkura T., Nakanishi H., Narimatsu H.: Molecular cloning and characterization of a novel human β1,4-N-acetylgalactosaminyltransferase, β4GalNAc-T3, responsible for the synthesis of N,N′-diacetyllactosediamine, GalNAcβ1-4GlcNAc. J. Biol. Chem. 278, 47534–47544 (2003)

    Article  CAS  PubMed  Google Scholar 

  64. Hirai H., Karian P., Kikyo N.: Regulation of embryonic stem cell self-renewal and pluripotency by leukaemia inhibitory factor. Biochem. J. 438, 11–23 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee M.Y., Ryu J.M., Lee S.H., Park J.H., Han H.J.: Lipid rafts play an important role for maintenance of embryonic stem cell self-renewal. J. Lipid Res. 51, 2082–2089 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yanagisawa M., Nakamura K., Taga T.: Roles of lipid rafts in integrin-dependent adhesion and gp130 signalling pathway in mouse embryonic neural precursor cells. Genes Cells. 9, 801–809 (2004)

    Article  CAS  PubMed  Google Scholar 

  67. Lingwood D., Simons K.: Lipid rafts as a membrane-organizing principle. Science. 327, 46–50 (2010)

    Article  CAS  PubMed  Google Scholar 

  68. Nairn A.V., Kinoshita-Toyoda A., Toyoda H., Xie J., Harris K., Dalton S., Kulik M., Pierce J.M., Toida T., Moremen K.W., Linhardt R.J.: Glycomics of proteoglycan biosynthesis in murine embryonic stem cell differentiation. J. Proteome Res. 6, 4374–4387 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kraushaar D.C., Rai S., Condac E., Nairn A., Zhang S., Yamaguchi Y., Moremen K., Dalton S., Wang L.: Heparan sulfate facilitates FGF and BMP signaling to drive mesoderm differentiation of mouse embryonic stem cells. J. Biol. Chem. 287, 22691–22700 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sasaki N., Hirano T., Ichimiya T., Wakao M., Hirano K., Kinoshita-Toyoda A., Toyoda H., Suda Y., Nishihara S.: The 3'-phosphoadenosine 5'-phosphosulfate transporters, PAPST1 and 2, contribute to the maintenance and differentiation of mouse embryonic stem cells. PLoS One. 4, e8262 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lee J.S., Chien C.B.: When sugars guide axons: insights from heparan sulphate proteoglycan mutants. Nat Rev Genet. 5, 923–935 (2004)

    Article  CAS  PubMed  Google Scholar 

  72. Tabata T., Takei Y.: Morphogens, their identification and regulation. Development. 131, 703–712 (2004)

    Article  CAS  PubMed  Google Scholar 

  73. Yan D., Lin X.: Drosophila glypican dally-like acts in FGF-receiving cells to modulate FGF signaling during tracheal morphogenesis. Dev. Biol. 312, 203–216 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nishihara S.: Glycosyltransferases and transporters that contribute to proteoglycan synthesis in Drosophila: identification and functional analyses using the heritable and inducible RNAi system. Methods Enzymol. 480, 323–351 (2010)

    Article  CAS  PubMed  Google Scholar 

  75. Sasaki N., Okishio K., Ui-Tei K., Saigo K., Kinoshita-Toyoda A., Toyoda H., Nishimura T., Suda Y., Hayasaka M., Hanaoka K., Hitoshi S., Ikenaka K., Nishihara S.: Heparan sulfate regulates self-renewal and pluripotency of embryonic stem cells. J. Biol. Chem. 283, 3594–3606 (2008)

    Article  CAS  PubMed  Google Scholar 

  76. Fico A., De Chevigny A., Egea J., Bosl M.R., Cremer H., Maina F., Dono R.: Modulating Glypican4 suppresses tumorigenicity of embryonic stem cells while preserving self-renewal and pluripotency. Stem Cells. 30, 1863–1874 (2012)

    Article  CAS  PubMed  Google Scholar 

  77. Kumar A., Torii T., Ishino Y., Muraoka D., Yoshimura T., Togayachi A., Narimatsu H., Ikenaka K., Hitoshi S.: The Lewis X-related α1,3-fucosyltransferase, Fut10, is required for the maintenance of stem cell populations. J. Biol. Chem. 288, 28859–28868 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Johnson C.E., Crawford B.E., Stavridis M., Ten Dam G., Wat A.L., Rushton G., Ward C.M., Wilson V., van Kuppevelt T.H., Esko J.D., Smith A., Gallagher J.T., Merry C.L.: Essential alterations of heparan sulfate during the differentiation of embryonic stem cells to Sox1-enhanced green fluorescent protein-expressing neural progenitor cells. Stem Cells. 25, 1913–1923 (2007)

    Article  CAS  PubMed  Google Scholar 

  79. Kraushaar D.C., Yamaguchi Y., Wang L.: Heparan sulfate is required for embryonic stem cells to exit from self-renewal. J. Biol. Chem. 285, 5907–5916 (2010)

    Article  CAS  PubMed  Google Scholar 

  80. Lanner F., Lee K.L., Sohl M., Holmborn K., Yang H., Wilbertz J., Poellinger L., Rossant J., Farnebo F.: Heparan sulfation-dependent fibroblast growth factor signaling maintains embryonic stem cells primed for differentiation in a heterogeneous state. Stem Cells. 28, 191–200 (2010)

    CAS  PubMed  Google Scholar 

  81. Pickford C.E., Holley R.J., Rushton G., Stavridis M.P., Ward C.M., Merry C.L.: Specific glycosaminoglycans modulate neural specification of mouse embryonic stem cells. Stem Cells. 29, 629–640 (2011)

    Article  CAS  PubMed  Google Scholar 

  82. Forsberg M., Holmborn K., Kundu S., Dagalv A., Kjellen L., Forsberg-Nilsson K.: Undersulfation of heparan sulfate restricts differentiation potential of mouse embryonic stem cells. J. Biol. Chem. 287, 10853–10862 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hirano K., Van Kuppevelt T.H., Nishihara S.: The transition of mouse pluripotent stem cells from the naïve to the primed state requires Fas signaling through 3-O sulfated heparan sulfate structures recognized by the HS4C3 antibody. Biochem. Biophys. Res. Commun. 430, 1175–1181 (2013)

    Article  CAS  PubMed  Google Scholar 

  84. Hirano K., Sasaki N., Ichimiya T., Miura T., Van Kuppevelt T.H., Nishihara S.: 3-O-sulfated heparan sulfate recognized by the antibody HS4C3 contributes to the differentiation of mouse embryonic stem cells via fas signaling. PLoS One. 7, e43440 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Spicer A.P., Parry G., Patton S., Gendler S.J.: Molecular cloning and analysis of the mouse homologue of the tumor-associated mucin, MUC1, reveals conservation of potential O-glycosylation sites, transmembrane, and cytoplasmic domains and a loss of minisatellite-like polymorphism. J. Biol. Chem. 266, 15099–15109 (1991)

    CAS  PubMed  Google Scholar 

  86. Mahanta S., Fessler S.P., Park J., Bamdad C.: A minimal fragment of MUC1 mediates growth of cancer cells. PLoS One. 3, e2054 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  87. Smagghe B.J., Stewart A.K., Carter M.G., Shelton L.M., Bernier K.J., Hartman E.J., Calhoun A.K., Hatziioannou V.M., Lillacci G., Kirk B.A., DiNardo B.A., Kosik K.S., Bamdad C.: MUC1* ligand, NM23-H1, is a novel growth factor that maintains human stem cells in a more naïve state. PLoS One. 8, e58601 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hikita S.T., Kosik K.S., Clegg D.O., Bamdad C.: MUC1* mediates the growth of human pluripotent stem cells. PLoS One. 3, e3312 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  89. Berger R.P., Sun Y.H., Kulik M., Lee J.K., Nairn A.V., Moremen K.W., Pierce M., Dalton S.: ST8SIA4-dependent polysialylation is part of a developmental program required for germ layer formation from human pluripotent stem cells. Stem Cells. 34, 1742–1752 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bao S., Tang F., Li X., Hayashi K., Gillich A., Lao K., Surani M.A.: Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells. Nature. 461, 1292–1295 (2009)

    Article  CAS  PubMed  Google Scholar 

  91. Yang J., van Oosten A.L., Theunissen T.W., Guo G., Silva J.C., Smith A.: Stat3 activation is limiting for reprogramming to ground state pluripotency. Cell Stem Cell. 7, 319–328 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author’s work cited in this review was supported in part by grants from MEXT and JST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoko Nishihara.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishihara, S. Glycans define the stemness of naïve and primed pluripotent stem cells. Glycoconj J 34, 737–747 (2017). https://doi.org/10.1007/s10719-016-9740-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9740-9

Keywords

Navigation