Skip to main content
Log in

The complex of partial bases for F n and finite generation of the Torelli subgroup of Aut (F n )

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We study the complex of partial bases of a free group, which is an analogue for Aut(F n ) of the curve complex for the mapping class group. We prove that it is connected and simply connected, and we also prove that its quotient by the Torelli subgroup of Aut(F n ) is highly connected. Using these results, we give a new, topological proof of a theorem of Magnus that asserts that the Torelli subgroup of Aut(F n ) is finitely generated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong M.A.: On the fundamental group of an orbit space. Proc. Camb. Philos. Soc. 61, 639–646 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bestvina M., Bux K.-U., Margalit D.: Dimension of the Torelli group for out(F n ). Invent. Math. 170(1), 1–32 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bestvina M., Feighn M.: A hyperbolic Out(F n )-complex. Groups Geom. Dyn. 4(1), 31–58 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bestvina, M., Feighn, M.: Hyperbolicity of the complex of free factors. Arxiv preprint, http://arxiv.org/abs/1107.3308 (2011)

  5. Birman J.S.: Mapping class groups and their relationship to braid groups. Commun. Pure Appl. Math. 22, 213–238 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  6. Birman J.S.: On Siegel’s modular group. Math. Ann. 191, 59–68 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, F., Pakianathan, J.: On automorphism groups of free groups and their nilpotent quotients. (in preparation)

  8. Day M., Putman A.: A Birman exact sequence for Aut(F n ). Adv. Math. 231, 243–275 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Farb, B.: Automorphisms of F n which act trivially on homology. (in preparation)

  10. Gersten S.M.: A presentation for the special automorphism group of a free group. J. Pure Appl. Algebra 33(3), 269–279 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Handel, M., Mosher, L.: The free splitting complex of a free group I: Hyperbolicity. Arxiv preprint, http://arxiv.org/abs/1111.1994 (2011)

  12. Harer J.L.: Stability of the homology of the mapping class groups of orientable surfaces. Ann. Math. (2) 121(2), 215–249 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hatcher A.: Homological stability for automorphism groups of free groups. Comment. Math. Helv. 70(1), 39–62 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hatcher A., Vogtmann K.: The complex of free factors of a free group. Quart. J. Math. Oxf. Ser. (2) 49(196), 459–468 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hatcher A., Vogtmann K.: Cerf theory for graphs. J. Lond. Math. Soc. (2) 58(3), 633–655 (1998)

    Article  MathSciNet  Google Scholar 

  16. Jensen C.A., Wahl N.: Automorphisms of free groups with boundaries. Algebra Geom. Topol. 4, 543–569 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Johnson D.: The structure of the Torelli group. I. A finite set of generators for \({\mathcal{I}}\). Ann. Math. (2) 118(3), 423–442 (1983)

    Article  MATH  Google Scholar 

  18. Kapovich I., Lustig M.: Geometric intersection number and analogues of the curve complex for free groups. Geom. Topol. 13(3), 1805–1833 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kawazumi, N.: Cohomological aspects of Magnus expansions. Preprint (2005)

  20. Lyndon R.C., Schupp P.E.: Combinatorial Group Theory. Springer, Berlin (1977)

    MATH  Google Scholar 

  21. Maazen, H.: Homology Stability for the General Linear Group. Thesis, University of Utrecht, Utrecht (1979)

  22. Magnus W.: Über n-dimensionale Gittertransformationen. Acta. Math. 64(1), 353–367 (1935)

    Article  MathSciNet  Google Scholar 

  23. Masur H.A., Minsky Y.N.: Geometry of the complex of curves. I. Hyperbolicity. Invent. Math. 138(1), 103–149 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. McCool J.: Some finitely presented subgroups of the automorphism group of a free group. J. Algebra 35, 205–213 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nielsen J.: Die isomorphismengruppe der freien gruppen. Math. Ann. 91(3–4), 169–209 (1924)

    Article  MathSciNet  MATH  Google Scholar 

  26. Powell J.: Two theorems on the mapping class group of a surface. Proc. Amer. Math. Soc. 68(3), 347–350 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  27. Putman A.: Cutting and pasting in the Torelli group. Geom. Topol. 11, 829–865 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Putman A.: A note on the connectivity of certain complexes associated to surfaces. Enseign. Math. (2) 54(3–4), 287–301 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Putman A.: An infinite presentation of the Torelli group. Geom. Funct. Anal. 19(2), 591–643 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Putman A.: The second rational homology group of the moduli space of curves with level structures. Adv. Math. 229, 1205–1234 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Putman, A.: The Johnson homomorphism and its kernel. Preprint (2009)

  32. Putman, A.: The abelianization of the Torelli group (in preparation)

  33. Rourke, C.P., Sanderson, B.J.: Introduction to Piecewise-Linear Topology. Springer, Berlin (Reprint, 1982)

  34. Sabalka, L., Savchuk, D.: On the geometry of a proposed curve complex analogue for Out(Fn). Arxiv preprint, http://arxiv.org/abs/1007.1998 (2010)

  35. Spanier, E.H.: Algebraic Topology. Springer, New York (Corrected reprint, 1981)

  36. Zeeman E.C.: Relative simplicial approximation. Proc. Camb. Philos. Soc. 60, 39–43 (1964)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Putman.

Additional information

Matthew Day: Supported in part by an NSF postdoctoral fellowship.

Andrew Putman: Supported in part by NSF grant DMS-1005318.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Day, M., Putman, A. The complex of partial bases for F n and finite generation of the Torelli subgroup of Aut (F n ). Geom Dedicata 164, 139–153 (2013). https://doi.org/10.1007/s10711-012-9765-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-012-9765-6

Keywords

Mathematics Subject Classification

Navigation