Skip to main content
Log in

Are high-latitude individuals superior competitors? A test with Rana temporaria tadpoles

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Species with a wide distribution over latitudinal gradients often exhibit increasing growth and development rates towards higher latitudes. Ecological theory predicts that these fast-growing genotypes are, in the absence of trade-offs with fast growth, better competitors than low-latitude conspecifics. While knowledge on key ecological traits along latitudinal clines is important for understanding how these clines are maintained, the relative competitive ability of high latitude individuals against low latitude conspecifics has not been tested. Growth and development rates of the common frog Rana temporaria increase along the latitudinal gradient across Scandinavia. Here we investigated larval competition over food resources within and between two R. temporaria populations originating from southern and northern Sweden in an outdoor common garden experiment. We used a factorial design, where southern and northern tadpoles were reared either as single populations or as mixes of the two populations at two densities and predator treatments (absence and non-lethal presence of Aeshna dragonfly larvae). Tadpoles from the high latitude population grew and developed faster and in the beginning of the experiment they hid less and were more active than tadpoles from the low latitude population. When raised together with high latitude tadpoles the southern tadpoles had a longer larval period, however, the response of high latitude tadpoles to the competition by low latitude tadpoles did not differ from their response to intra-population competition. This result was not significantly affected by density or predator treatments. Our results support the hypothesis that high latitude populations are better competitors than their low latitude conspecifics, and suggest that in R. temporaria fast growth and development trade off with other fitness components along the latitudinal gradient across Scandinavia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altwegg R (2002) Predator-induced life-history plasticity under time constraints in pool frogs. Ecology 83:2542–2551

    Google Scholar 

  • Altwegg R, Reyer H-U (2003) Patterns of natural selection on size at metamorphosis in water frogs. Evol Int J Org Evol 57:872–882

    Google Scholar 

  • Angilletta MJ Jr, Wilson RS, Navas CA, James RS (2003) Tradeoffs and the evolution of thermal reaction norms. Trends Ecol Evol 18:234–240. doi:10.1016/S0169-5347(03)00087-9

    Article  Google Scholar 

  • APHA (1985) Standard methods for the examination of water and wastewater, 16th edn. American Public Health Association, Washington

    Google Scholar 

  • Arendt JD (1997) Adaptive intrinsic growth rates: an integration across taxa. Q Rev Biol 72:149–177. doi:10.1086/419764

    Article  Google Scholar 

  • Arnett AE, Gotelli NJ (1999) Geographic variation in life-history traits of the ant lion, Myrmeleon immaculatus: evolutionary implications of Bergmann’s rule. Evol Int J Org Evol 53:1180–1188. doi:10.2307/2640821

    Google Scholar 

  • Ashton KG (2004) Sensitivity of intraspecific latitudinal clines of body size for tetrapods to sampling, latitude and body size. Integr Comp Biol 44:403–412. doi:10.1093/icb/44.6.403

    Article  Google Scholar 

  • Berven KA (1990) Factors affecting population fluctuations in larval and adult stages of the wood frog (Rana sylvatica). Ecology 71:1599–1608. doi:10.2307/1938295

    Article  Google Scholar 

  • Berven KA, Gill DE (1983) Interpreting geographic variation in life-history traits. Am Zool 23:85–97

    Google Scholar 

  • Biek R, Funk CW, Maxell BA, Mills LS (2002) What is missing in amphibian decline research: insights from ecological sensitivity analysis. Conserv Biol 16:728–734. doi:10.1046/j.1523-1739.2002.00433.x

    Article  Google Scholar 

  • Biro PA, Abrahams MV, Post JR, Parkinson EA (2004) Predators select against high growth rates and risk-taking behaviour in domestic trout populations. Proc R Soc Lond B Biol Sci 271:2233–2237. doi:10.1098/rspb.2004.2861

    Article  Google Scholar 

  • Biro PA, Abrahams MV, Post JR, Parkinson EA (2006) Behavioural trade-offs between growth and mortality explain evolution of submaximal growth rates. J Anim Ecol 75:1161–1171. doi:10.1111/j.1365-2656.2006.01137.x

    Article  Google Scholar 

  • Blanckenhorn WU, Dermot M (2004) Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum? Integr Comp Biol 44:413–424. doi:10.1093/icb/44.6.413

    Article  Google Scholar 

  • Brodin T, Johansson F (2004) Conflicting selection pressures on the growth/predation risk trade-off in a damselfly. Ecology 85:2927–2932. doi:10.1890/03-3120

    Article  Google Scholar 

  • Connell JH (1983) On the prevalence and relative importance of inter-specific competition: evidence from field experiments. Am Nat 122:661–696. doi:10.1086/284165

    Article  Google Scholar 

  • Conover DO, Present TMC (1990) Countergradient variation in growth rate: compensation for length of the growing season among Atlantic silversides from different latitudes. Oecologia 83:316–324

    Google Scholar 

  • Conover DO, Schultz ET (1995) Phenotypic similarity and the evolutionary significance of countergradient variation. Trends Ecol Evol 10:248–252. doi:10.1016/S0169-5347(00)89081-3

    Article  Google Scholar 

  • Conover DO, Brown JJ, Ehtisham A (1997) Countergradient variation in growth of young striped bass (Morone saxatilis) from different latitudes. Can J Fish Aquat Sci 54:2401–2409. doi:10.1139/cjfas-54-10-2401

    Article  Google Scholar 

  • Devlin RH, Johnsson JI, Smailus DE, Biagi CA, Jonsson E, Björnsson BT (1999) Increased ability to compete for food by growth hormone-transgenic coho salmon Oncorhynchus kisutsch (Walbaum). Aquacult Res 30:479–482. doi:10.1046/j.1365-2109.1999.00359.x

    Article  Google Scholar 

  • Gasc JP, Cabela A, Crnobrnja-Isailovic J, Dolmen D, Grossenbacher K, Haffner P, Lescure J, Martens H, Martinéz Rica JP, Oliveira ME, Sofianidou TS, Veith M, Zuiderwijk A (1997) Atlas of amphibians and reptiles in Europe. Societas Europaea Herpetologica and Muséum National d’Histoire Naturelle (IEGB/SPN), Paris

  • Gilchrist GW, Huey RB, Serra L (2001) Rapid evolution of wing size clines in Drosophila subobscura. Genetica 112–113:273–286. doi:10.1023/A:1013358931816

    Article  PubMed  Google Scholar 

  • Gosner KN (1960) A simplified table for staging anuran embryos and larvae with notes of identification. Herpetologica 16:183–190

    Google Scholar 

  • Grill CP, Juliano SA (1996) Predicting species interactions based on behaviour: predation and competition in container dwelling mosquitoes. J Anim Ecol 65:63–76. doi:10.2307/5700

    Article  Google Scholar 

  • Hellriegel B (2000) Single-or multistage regulation in complex life cycles: does it make a difference? Oikos 88:239–249. doi:10.1034/j.1600-0706.2000.880202.x

    Article  Google Scholar 

  • Imsland AK, Foss A, Nævdal G, Cross T, Bonga SW, Ham EV, Stefansson SO (2000) Countergradient variation in growth and food conversion efficiency of juvenile turbot. J Fish Biol 57:1213–1226. doi:10.1111/j.1095-8649.2000.tb00482.x

    Article  Google Scholar 

  • James AC, Partridge L (1998) Geographic variation in competitive ability in Drosophila melanogaster. Am Nat 151:530–537. doi:10.1086/286138

    Article  CAS  PubMed  Google Scholar 

  • Johansson F, Stoks R, Rowe L, De Block M (2001) Life history plasticity in a damselfly: effects of combined time and biotic constraints. Ecology 82:1857–1869

    Google Scholar 

  • Johansson M, Primmer CR, Merilä J (2006) History vs. current demography: explaining the genetic population structure of the common frog (Rana temporaria). Mol Ecol 15:975–983. doi:10.1111/j.1365-294X.2006.02866.x

    Article  CAS  PubMed  Google Scholar 

  • Lankford TE Jr, Billerbeck JM, Conover DO (2001) Evolution of intrinsic growth and energy acquisition rates. II. Trade-offs in vulnerability to predation in Menidia menidia. Evol Int J Org Evol 55:1873–1881. doi:10.1111/j.0014-3820.2001.tb00836.x

    Google Scholar 

  • Laugen AT, Laurila A, Merilä J (2002) Maternal and genetic contributions to geographical variation in Rana temporaria larval life-history traits. Biol J Linn Soc Lond 76:61–70. doi:10.1111/j.1095-8312.2002.tb01714.x

    Article  Google Scholar 

  • Laugen AT, Laurila A, Räsänen K, Merilä J (2003) Latitudinal countergradient variation in the common frog (Rana temporaria) development rates—evidence for local adaptation. J Evol Biol 16:996–1005. doi:10.1046/j.1420-9101.2003.00560.x

    Article  CAS  PubMed  Google Scholar 

  • Laugen AT, Kruuk LEB, Laurila A, Räsänen K, Stone J, Merilä J (2005) Quantitative genetics of larval life-history traits in Rana temporaria in different environmental conditions. Genet Res 86:161–170. doi:10.1017/S0016672305007810

    Article  CAS  PubMed  Google Scholar 

  • Laurila A, Pakkasmaa S, Merilä J (2001) Influence of seasonal time constraints on growth and development of common frog tadpoles: a photoperiod experiment. Oikos 95:451–460. doi:10.1034/j.1600-0706.2001.950310.x

    Article  Google Scholar 

  • Laurila A, Järvi-Laturi M, Pakkasmaa S, Merilä J (2004) Temporal variation in predation risk: stage-dependency, graded responses and fitness costs in tadpole antipredator defences. Oikos 107:90–99. doi:10.1111/j.0030-1299.2004.13126.x

    Article  Google Scholar 

  • Laurila A, Pakkasmaa S, Merilä J (2006) Population divergence in growth rate and antipredator defenses in Rana arvalis. Oecologia 147:585–595. doi:10.1007/s00442-005-0301-3

    Article  PubMed  Google Scholar 

  • Laurila A, Lindgren B, Laugen AT (2008) Antipredator defenses along a latitudinal gradient in Rana temporaria. Ecology 89:1399–1413. doi:10.1890/07-1521.1

    Article  PubMed  Google Scholar 

  • Lindgren B, Laurila A (2005) Proximate causes of adaptive growth rates: growth efficiency variation among latitudinal populations of Rana temporaria. J Evol Biol 18:820–828. doi:10.1111/j.1420-9101.2004.00875.x

    Article  CAS  PubMed  Google Scholar 

  • Loman J (2004) Density regulation in tadpoles of Rana temporaria: a full pond field experiment. Ecology 85:1611–1618. doi:10.1890/03-0179

    Article  Google Scholar 

  • Mangel M, Stamps J (2001) Trade-offs between growth and mortality and the maintenance of individual variation in growth. Evol Ecol Res 3:583–593

    Google Scholar 

  • Merilä J, Laurila A, Laugen AT, Räsänen K, Pahkala M (2000) Plasticity in age and size at metamorphosis in Rana temporaria—comparison of high and low latitude populations. Ecography 23:457–465. doi:10.1034/j.1600-0587.2000.230408.x

    Article  Google Scholar 

  • Merilä J, Laurila A, Lindgren B (2004) Variation in the degree and costs of adaptive phenotypic plasticity among Rana temporaria populations. J Evol Biol 17:1132–1140

    Article  PubMed  Google Scholar 

  • Mousseau TA, Fox WF (1998) Maternal effects as adaptations. Oxford University Press, New York

    Google Scholar 

  • Munch SB, Mangel M, Conover DO (2003) Quantifying natural selection in body size from field data: winter mortality in Menidia menidia. Ecology 84:2168–2177. doi:10.1890/02-0137

    Article  Google Scholar 

  • Odin H, Eriksson B, Perttu K (1983) Temperature climate maps for Swedish forestry. Department of Forest Soils, Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  • Orizaola G, Laurila A (2009) Microgeographic variation in temperature-induced plasticity in an isolated amphibian metapopulation. Evol Ecol (in press). doi:10.1007/s10682-008-9285-x

  • Palo JU, O’Hara RB, Laugen AT, Laurila A, Primmer CR, Merilä J (2003) Latitudinal divergence of common frog (Rana temporaria) life history traits by natural selection: evidence from a comparison of molecular and quantitative genetic data. Mol Ecol 12:1963–1968. doi:10.1046/j.1365-294X.2003.01865.x

    Article  CAS  PubMed  Google Scholar 

  • Persson L (1985) Asymmetrical competition: are larger animals competitively superior? Am Nat 126:261–266. doi:10.1086/284413

    Article  Google Scholar 

  • Pidancier N, Gauthier P, Miquel C, Pompanon F (2001) Polymorphic microsatellite DNA loci identified in the common frog (Rana temporaria, Amphibia, Ranidae). Mol Ecol Notes 2:304–305. doi:10.1046/j.1471-8286.2002.00244.x

    Article  Google Scholar 

  • Räsänen K, Laurila A, Merilä J (2003) Geographic variation in acid stress tolerance of the moor frog, Rana arvalis. I. Local adaptation. Evol Int J Org Evol 57:352–362. doi:10.1554/0014-3820(2003)057[0352:GVIAST]2.0.CO;2

    Google Scholar 

  • Relyea RA (2002) Local population differences in phenotypic plasticity: predator-induced changes in wood frog tadpoles. Ecol Monogr 72:77–93

    Article  Google Scholar 

  • Relyea RA (2007) Getting out alive: how predators affect the decision to metamorphose. Oecologia 152:389–400. doi:10.1007/s00442-007-0675-5

    Article  PubMed  Google Scholar 

  • Roff DA (1980) Optimizing development time in a seasonal environment: the ‘ups and downs’ of clinal variation. Oecologia 45:202–208. doi:10.1007/BF00346461

    Article  Google Scholar 

  • Schoener TW (1983) Field experiments on inter-specific competition. Am Nat 122:240–285. doi:10.1086/284133

    Article  Google Scholar 

  • Sears MW (2005) Geographic variation in the life history of the sagebrush lizard: the role of thermal constraints on activity. Oecologia 143:25–36. doi:10.1007/s00442-004-1767-0

    Article  PubMed  Google Scholar 

  • Skelly DK, Kiesecker JM (2001) Venue and outcome in ecological experiments: manipulations of larval anurans. Oikos 94:198–208. doi:10.1034/j.1600-0706.2001.t01-1-11105.x

    Article  Google Scholar 

  • Smith DC (1983) Factors controlling tadpole populations of the chorus frog (Pseudacris triseriata) on Isle Royale, Michigan. Ecology 64:501–510. doi:10.2307/1939970

    Article  Google Scholar 

  • Smith DC (1987) Adult recruitment in chorus frogs: effects of size and date and metamorphosis. Ecology 68:344–350. doi:10.2307/1939265

    Article  Google Scholar 

  • Uller T, Astheimer L, Olsson M (2007) Consequences of maternal yolk testosterone for offspring development and survival: experimental test in a lizard. Funct Ecol 21:544–551. doi:10.1111/j.1365-2435.2007.01264.x

    Article  Google Scholar 

  • Van Buskirk J, Arioli M (2005) Habitat specialization and adaptive divergence of anuran populations. J Evol Biol 18:596–608. doi:10.1111/j.1420-9101.2004.00869.x

    Article  PubMed  Google Scholar 

  • Vonesh JR, De la Cruz O (2002) Complex life cycles and density dependence: assessing the contribution of egg mortality to amphibian declines. Oecologia 133:325–333. doi:10.1007/s00442-002-1039-9

    Article  Google Scholar 

  • Werner EE (1992) Competitive interactions between wood frog and northern leopard frog larvae: the influence of size and activity. Copeia 1992:26–35. doi:10.2307/1446532

    Article  Google Scholar 

  • Werner EE (1994) Ontogenetic scaling of competitive relations: size-dependent effects and responses in two anuran larvae. Ecology 75:197–213. doi:10.2307/1939394

    Article  Google Scholar 

  • Werner EE, Gilliam JF (1984) The ontogenetic niche shift and species interactions in size-structured populations. Annu Rev Ecol Syst 15:393–425. doi:10.1146/annurev.es.15.110184.002141

    Article  Google Scholar 

  • Wilbur HM (1980) Complex life cycles. Annu Rev Ecol Syst 11:67–93. doi:10.1146/annurev.es.11.110180.000435

    Article  Google Scholar 

Download references

Acknowledgments

We thank Sofia Wennberg for help with the experiment, Gunilla Engström and Kerstin Santesson for help in the molecular laboratory, and Jon Loman, Gerard Malsher, German Orizaola and Katja Räsänen for valuable comments on earlier versions of the manuscript. This study was performed with the permission of the Ethical Committee for Animal Experiments in Uppsala County and funded by the Swedish Research Council (grant to AL) and Zoologiska Stiftelsen (BL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anssi Laurila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindgren, B., Laurila, A. Are high-latitude individuals superior competitors? A test with Rana temporaria tadpoles. Evol Ecol 24, 115–131 (2010). https://doi.org/10.1007/s10682-009-9294-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-009-9294-4

Keywords

Navigation