Skip to main content
Log in

Semiotic processes in chat-based problem-solving situations

  • Published:
Educational Studies in Mathematics Aims and scope Submit manuscript

Abstract

This article seeks to illustrate the analysis of episodes of chat sessions based on Charles Sanders Peirce’s triadic sign relation. The episodes are from a project called “Math-Chat”, which is based on the use of mathematical inscriptions in an experimental setting. What is characteristic of this chat setting is that pupils are required to document their attempts at solving mathematical problems as mutual inscriptions in written and graphical form. In order to analyze the outline, as well as the use and development of mutual inscriptions, a suitable instrument of analysis must first be developed. For this purpose, an interactionist approach is combined with a semiotic perspective. Through the incorporation of a semiotic perspective into an empirical study on learning mathematics at primary level, the development and use of such an instrument are demonstrated. In this way, both the development and also the structure of “semiotic process cards” are explained. In conclusion, my findings related to the use of inscriptions in general and the use of inscriptions in primary-classroom problem-solving processes are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Morgan (1998) describes the widespread significance of writing in mathematical learning processes.

  2. For example Meira (1995) “discusses the production and use of matheamtical notations by elementary school students” (p. 87).

  3. A practically orientated development was conducted by Reinhard (2008) as a “Wiki-basierte Lernumgebung zum kooperativen Lernen mit Neuen Medien im Mathematikunterricht der Primarstufe—WiLM@” (Wiki-based Learning Environment for Cooperative Learning with New Media in Primary Mathematics Classroom—WiLM@).

  4. NetMeeting is Freeware from Microsoft

  5. Hoffmann refers also to Peirce’s term “habit change” in CP 5.476.

  6. This and other contrasting examples are described in detail in Schreiber (2010).

  7. Adam Ries (*1492 – +1559) was a German mathematician.

  8. See Schreiber 2006 and chapter 5.3 in Schreiber 2010.

References

  • Bateson, G. (1955). A theory of play and fantasy. In Bateson, G. (1972), Steps to an ecology of mind (pp. 177–193). New York: Ballantine.

  • Blumer, H. (1969). Symbolic interactionism. Prentice-Hall, NJ: Englewood Cliffs.

    Google Scholar 

  • Bruner, J. (1996). The culture of education. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Cobb, P., & Bauersfeld, H. (Eds.). (1995). The emergence of mathematical meaning: Interaction in classroom cultures. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Donaldson, M. (1978). Children's minds. London: Fontana/Croom Helm.

    Google Scholar 

  • Dörfler, W. (2004). Mathematical reasoning: mental activity or practice with diagrams. In M. Niss (Ed.), Proceedings of the Tenth International Congress on Mathematical Education. Roskilde: IMFUFA, Roskilde University.

    Google Scholar 

  • Dörfler, W. (2006). Diagramme und mathematikunterricht. [Diagrams and mathematics instruction]. Journal für Mathematik-Didaktik, 27(3/4), 200–219.

    Google Scholar 

  • Dürscheid, C. (2003). Medienkommunikation im Kontinuum von Mündlichkeit und Schriftlichkeit. Theoretische und empirische Probleme. [Media communication in a continuum of vocality and writing. Theoretical and empirical problems]. Zeitschrift für Angewandte Linguistik, (38) (pp. 37-56), Koblenz: Peter Lang Verlag.

  • Eco, U. (1976). A theory of semiotics. Bloomington, Indiana: Indiana University Press.

    Google Scholar 

  • Eco, U. (1979). The role of the reader: Explorations in the semiotics of texts (advances in semiotics). Indiana: Indiana University Press.

    Google Scholar 

  • Fetzer, M. (2007). Interaktion am Werk. Eine Interaktionstheorie fachlichen Lernens, entwickelt am Beispiel von Schreibanlässen im Mathematikunterricht der Grundschule. [Work-based interaction. A theory of interaction of subject learning, developed using writing impulses in primary mathematical education]. Bad Heilbrunn: Klinkhardt

  • Goffman, E. (1974). Frame analysis. An essay on the organisation of experience. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Gravemeijer, K. (2002). Preamble: from models to modeling. In K. Gravemeijer et al. (Eds.), Symbolizing, modelling and tool use in mathematics education (pp. 7–22). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Gravemeijer, K., Cobb, P., Bowers, J. S., & Whitenack, J. (2000). Symbolizing, modelling and instructional design. In P. Cobb, E. Yackel, & K. McClain (Eds.), Symbolizing and communicating in mathematics classrooms (pp. 225–273). London: Lawrence Erlbaum.

    Google Scholar 

  • Hoffmann, M. (1996). Eine semiotische Modellierung von Lernprozessen. [A semiotic modeling of learning processes]. Occasional Paper 160, retrieved from http://www.unibi.de/idm/serv/dokubib/occ160.pdf

  • Hoffmann, M. (2002). Erkenntnisentwicklung—Ein semiotisch pragmatischer Ansatz. [Development of cognition—a semiotic pragmatic approach]. Habilitation. Philosophische Fakultät Technische Universität Dresden.

  • Hoffmann, M. (Ed.). (2003). Mathematik verstehen. Semiotische Perspektiven. [Understanding mathematics. Semiotic perspectives]. Hildesheim: Franzbecker.

    Google Scholar 

  • Hoffmann, M. (2006). What is a “semiotic perspective”, and what could it be? Some comments on the contributions to this special issue. Educational Studies in Mathematics, 61(1–2), 279–291.

    Article  Google Scholar 

  • Kadunz, G. (2006). Experiments with diagrams—a semiotic approach. Zentralblatt für Didaktik der Mathematik, 38(6), 445–455.

    Article  Google Scholar 

  • Kelly, J. (1999). Improving problem solving through drawings. Teaching Children Mathematics, (6) 1, 48-51.

    Google Scholar 

  • Krauthausen, G., & Scherer, P. (2001). Einführung in die Mathematikdidaktik. [Introduction to the didactics of mathematics]. Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Krummheuer, G. (2000a). Interpretative classroom research in primary mathematics education. Some preliminary remarks. Zentralblatt für Didaktik der Mathematik, 32(5), 124–125.

    Article  Google Scholar 

  • Krummheuer, G. (2000b). Mathematics learning in narrative classroom cultures: Studies of argumentation in primary mathematics education. For the Learning of Mathematics, 20, 22–32.

    Google Scholar 

  • Krummheuer, G. (2008). Inskription, Narration und diagrammatisch basierte Argumentation. Narrative Rationalisierungspraxen im Mathematikunterricht der Grundschule. [Inscription, narration and diagramatic argumentation. Narrative rationalization practices in mathematical education in primary schools]. In H. Jungwirth & G. Krummheuer (Eds.), Der Blick nach innen: Aspekte der alltäglichen Lebenswelt Mathematikunterricht (2) (pp. 7–37). Münster: Waxmann.

    Google Scholar 

  • Krummheuer, G., & Fetzer, M. (2005). Der Alltag im Mathematikunterricht. Beobachten, Verstehen, Gestalten. [Mathematics education in everyday life. Observing, understanding, constructing]. Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Krummheuer, G., & Naujok, N. (1999). Grundlagen und Beispiele Interpretativer Unterrichtsforschung. [Basic principles and examples of interpretativ classroom teaching research]. Opladen: Leske und Budrich.

    Google Scholar 

  • Latour, B. (1987). Science in action: How to follow scientists and engineers through society. Cambridge, MA: Harvard Press.

    Google Scholar 

  • Latour, B. (1990). Drawing things together. In M. Lynch & S. Woolgar (Eds.), Representation in scientific practice (pp. 19–68). Cambridge, MA: MIT Press.

    Google Scholar 

  • Latour, B., & Woolgar, S. (1986). Laboratory life. The construction of scientific facts (2nd ed.). Princeton: Princeton University Press.

    Google Scholar 

  • Lehrer, R., Schauble, L., & Carpenter, S. (2000). The interrelated development of inscriptions and conceptual understanding. In P. Cobb, E. Yackel, & K. McClain (Eds.), Symbolizing and communicating in mathematics classrooms (pp. 325–360). London: Lawrence Erlbaum.

    Google Scholar 

  • Meira, L. (1995). The microevolution of mathematical representations in children´s activities. Cognition and Instruction, 13(2), 269–313.

    Article  Google Scholar 

  • Meira, L. (2002). Mathematical representations as systems of notations-in-use. In K. Gravemeijer et al. (Eds.), Symbolizing, modeling and tool use in mathematics education (pp. 87–103). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Morgan, C. (1998). Writing mathematically—the discourse of investigation. London: Falmer Press.

    Google Scholar 

  • Naujok, N., Brandt, B., & Krummheuer, G. (2004). Interaktion im Unterricht. [Interaction in classroom education]. In W. Helsper & J. Böhme (Eds.), Handbuch der Schulforschung (pp. 753–773). Wiesbaden: Verlag für Sozialwissenschaften.

    Google Scholar 

  • Nöth, W. (2000). Handbuch der Semiotik. 2—vollständig neu bearbeitete und erweiterte Auflage. [Handbook of semiotics. Second edition]. Stuttgart, Weimar: Verlag J.B. Metzler.

    Google Scholar 

  • Otte, M. F. (2011). Evolution, learning, and semiotics from a Peircean point of view. Educational Studies in Mathematics, 77, 313–329.

    Article  Google Scholar 

  • Peirce, C. S. (1931-1935). Collected papers of Charles Sanders Peirce. Volumes I-VI, (ed. by C. Hartshorne & P. Weiss 1931-1935; quotations, as established, according to volume and paragraph). Cambridge, MA: Harvard University Press.

  • Pimm, D. (1987). Speaking mathematically. Communication in mathematics classrooms. London, New York: Routledge.

    Google Scholar 

  • Presmeg, N. (2001). Progressive mathematizing using semiotic chaining. The 25th Annual Conference of the International Group for the Psychology of Mathematics Education, Discussion Group 3, Semiotics in Mathematics Education. Retrieved from http://www.math.uncc.edu/∼sae/dg3/norma-PME25DG.pdf

  • Presmeg, N. (2006). Semiotics and the “connections” standard: Significance of semiotics for teachers of mathematics. Educational Studies in Mathematics, 61, 163–182.

    Article  Google Scholar 

  • Reinhard, C. (2008). Wiki-basierte Lernumgebung zum kooperativen Lernen mit Neuen Medien im Mathematikunterricht der Primarstufe—WiLM@. [Wiki-based learning environment for cooperative learning with new media in the primary mathematics classroom—WiLM@] In Beiträge zum Mathematikunterricht (pp. 657–661). Hildesheim: Franzbecker.

  • Roth, W.-M., & McGinn, M. (1998). Inscriptions: Toward a theory of representing as social practice. Review of Educational Research, 68(1), 35–59.

    Google Scholar 

  • Saenz-Ludlow, A. (2006). Classroom interpreting games with an illustration. Educational Studies in Mathematics, 61, 183–218.

    Article  Google Scholar 

  • Schreiber, C. (2004). The interactive development of mathematical inscriptions—a semiotic perspective on pupils’ externalisation in an internet chat about mathematical problems. Zentralblatt für Didaktik der Mathematik, 36(6), 185–195.

    Article  Google Scholar 

  • Schreiber, C. (2005a). Semiotic processes in a mathematical internet-chat. In ERME: Proceedings 2005 (CERME 4 in Sant Feliu de Guixols). http://ermeweb.free.fr/CERME4/CERME4_WG8.pdf

  • Schreiber, C. (2005b). Semiotische Lernkarten. [Semiotic learning cards]. In Beiträge zum Mathematikunterricht (pp. 525-528). Hildesheim: Franzbecker.

  • Schreiber, C. (2006). Die Peirce'sche zeichentriade zur analyse mathematischer chat-kommunikation. [Using the Peircean sign-triad to analyse mathematical chat communication]. Journal für Mathematikdidaktik, 27(3/4), 240–267. Wiesbaden: Vieweg + Teuber Verlag.

    Google Scholar 

  • Schreiber, C. (2010). Semiotische Prozess-Karten—chatbasierte Inskriptionen in mathematischen Problemlöseprozessen. [Semiotic Process Cards—chatbased inscriptions in mathematical problem-solving processes] Dissertation. Münster: Waxmann

  • Seeger, F. (2011). On meaning making in mathematics education: Social, emotional, semiotic. Educational Studies in Mathematics, 77, 207–226.

    Article  Google Scholar 

  • Sherin, B. (2000). How students invent representations of motion—a genetic account. Journal of Mathematical Behavior, 19(4), 399–441.

    Article  Google Scholar 

  • Steinbring, H. (2006). What makes a sing a mathematical sign?—an epistemological perspective on mathematical interaction. Educational Studies in Mathematics, 61, 133–162.

    Article  Google Scholar 

  • Volkert, K. (1990). Mathematics and semiotics. In W. A. Koch (Ed.), Semiotics in the individual sciences (pp. 122–134). Bochum: Brockmeyer.

    Google Scholar 

  • Zellmer, S. (1979). Pädagogische Semiotik in der Mathematik-Didaktik. [Pedagogical semiotics in the didactics of mathematics]. Baden-Baden: Agis.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Schreiber.

Additional information

This study was supported by Müller-Reitz-Stiftung (T009 12245/02) entitled “Math-Chat: pilot study of chat-based creation of mathematical inscriptions among primary pupils” (“Mathe-Chat: Pilotstudie zur Chat-unterstützten Erstellung mathematischer Inskriptionen unter Grundschülern”).

Appendices

Appendix

figure a
figure b

Transcription rules

1. column and 7. column

  • line numbers and time

2. column and 6. column

  • shortnames of interacting persons on the left hand side (Times New Roman 12 pt bold).

  • oral utterances on the right hand side (Times New Roman 12 pt); incomprehensible utterances are marked as (incomprehensible).

  • paraverbal information, (special characters see below), for example emphasizing, whispering, etc. (Times New Roman 12 pt italics)

  • # refers to actions on the computer

3. column and 5. column

  • actions marked with # are actions on the computer of each chat participant.

4. column

  • part of the screenshot with time information (here every 10 seconds)

Special characters:

,:

short break in an utterance

(.):

break (1 s)

(..):

break (2 s)

(…):

break (3 s)

(4 s):

duration of a break longer than 3 s

/ - \:

rising, even, falling pitch

yes :

bold: accentuated word

s i x t e e n:

s p a c e d: spoken slowly

(“<”) and (“>”) two participants are talking both at the same time, for example:

8 S2: < plus 80 is 140/

9 S1: < 140\ ok

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreiber, C. Semiotic processes in chat-based problem-solving situations. Educ Stud Math 82, 51–73 (2013). https://doi.org/10.1007/s10649-012-9417-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10649-012-9417-7

Keywords

Navigation