Skip to main content
Log in

Parity anomaly in a \(\mathcal{P}\mathcal{T}\)-symmetric quartic Hamiltonian

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

In this paper, two independent methods are used to show that the non-Hermitian \(\mathcal{P}\mathcal{T}\)-symmetric wrong-sign quartic Hamiltonian H = (1/2m)p 2gx 4 is exactly equivalent to the conventional Hermitian Hamiltonian \(\tilde H = ({1 \mathord{\left/ {\vphantom {1 {2m}}} \right. \kern-\nulldelimiterspace} {2m}})p^2 + 4gx^4 - \hbar ({{2g} \mathord{\left/ {\vphantom {{2g} m}} \right. \kern-\nulldelimiterspace} m})^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} x\). First, this equivalence is demonstrated by using elementary differential-equation techniques and second, it is demonstrated by using functional-integration methods. As the linear term in the Hermitian Hamiltonian \(\tilde H\) is proportional to ℏ, this term is anomalous; that is, the linear term in the potential has no classical analog. The anomaly is a consequence of the broken parity symmetry of the original non-Hermitian \(\mathcal{P}\mathcal{T}\)-symmetric Hamiltonian. The anomaly term in \(\tilde H\) remains unchanged if an x 2 term is introduced into H. When such a quadratic term is present in H, this Hamiltonian possesses bound states. The corresponding bound states in \(\tilde H\) are a direct physical measure of the anomaly. If there were no anomaly term, there would be no bound states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Buslaev and V. Grecchi: J. Phys. A: Math. Gen. 26 (1993) 5541.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. H.F. Jones and J. Mateo: Phys. Rev. D 73 (2006) 085002, arXiv:quant-ph/0601188.

  3. C.M. Bender, D.C. Brody, J.-H. Chen, H.F. Jones, K.A. Milton, and M.C. Ogilvie: Phys. Rev. D 74 (2006) 025016, arXiv:hep-th/0605066.

  4. C.M. Bender and S. Boettcher: Phys. Rev. Lett. 80 (1998) 5243.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. C.M. Bender, S. Boettcher, and P.N. Meisinger: J. Math. Phys. 40 (1999) 2201.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. C.M. Bender, F. Cooper, P.N. Meisinger, and V.M. Savage: Phys. Lett. A 259 (1999) 224.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. P. Dorey, C. Dunning, and R. Tateo: J. Phys. A: Math. Gen. 34 (2001) L391; 5679.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. See, for example: G. Lévai and M. Znojil: J. Phys. A 33 (2000) 7165. C.M. Bender, G.V. Dunne, P.N. Meisinger, and M. Simsek: Phys. Lett. A 281 (2001) 311. B. Bagchi and C. Quesne: Phys. Lett. A 300 (2002) 18. D.T. Trinh: PhD Thesis, University of Nice-Sophia Antipolis, 2002. For further references see Proceedings of the First, Second, Third, and Fourth International Workshops on Pseudo-Hermitian Hamiltonians in Quantum Mechanics in Czech. J. Phys. 54 (2004) issues #1 and #10, 55 (2005) issue #9, and in J. Phys. A: Math. Gen. 39 (2006) (to appear); see also T. Tanaka: arXiv:hep-th/0605035 and arXiv:hep-th/0603096.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. K. Symanzik: Commun. Math. Phys. 45 (1975) 79.

    Article  MathSciNet  ADS  Google Scholar 

  10. C.M. Bender, K.A. Milton, and V.M. Savage: Phys. Rev. D 62 (2000) 85001.

    Google Scholar 

  11. F. Kleefeld: J. Phys. A 39 L9 (2006), arXiv:hep-th/0506142; arXiv:hep-th/0408097.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. C.M. Bender, P.N. Meisinger, and H. Yang: Phys. Rev. D 63 (2001) 45001.

  13. Z. Ahmed, C.M. Bender, and M.V. Berry: J. Phys. A: Math. Gen. 38 (2005) L627.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. C.M. Bender, D.C. Brody, and H.F. Jones: Phys. Rev. Lett. 89 (2002) 270401; Am. J. Phys. 71 (2003) 1095.

    Google Scholar 

  15. A. Mostafazadeh: J. Math. Phys. 43 (2002) 205; J. Phys. A: Math. Gen. 36 (2003) 7081.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. C.M. Bender, D.C. Brody, and H.F. Jones: Phys. Rev. Lett. 93 (2004) 251601; Phys. Rev. D 70 (2004) 025001. C.M. Bender, I. Cavero-Pelaez, K.A. Milton, and K.V. Shajesh: Phys. Lett. B 613 (2005) 97, arXiv: hep-th/0501180. C.M. Bender and B. Tan: J. Phys. A: Math. Gen. 39 (2006) 1945, quant-ph/0601123. C.M. Bender, H.F. Jones, and R.J. Rivers: Phys. Lett. B 625 (2005) 333, arXiv:hep-th/0508105. C.M. Bender, P.N. Meisinger, and Q. Wang: J. Phys. A: Math. Gen. 36 (2003) 1973. C.M. Bender, J. Brod, A. Refig, and M.E. Reuter: J. Phys. A: Math. Gen. 37 (2004) 10139.

  17. C.M. Bender, S. Boettcher, H.F. Jones, P.N. Meisinger, and M. Simsek: Phys. Lett. A 291 (2001) 197.

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bender, C.M. Parity anomaly in a \(\mathcal{P}\mathcal{T}\)-symmetric quartic Hamiltonian. Czech J Phys 56, 1047–1062 (2006). https://doi.org/10.1007/s10582-006-0399-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10582-006-0399-5

Key words

Navigation