Skip to main content
Log in

De Sitter’s theory of Galilean satellites

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In this article, we investigate the mathematical part of De Sitter’s theory on the Galilean satellites, and further extend this theory by showing the existence of some quasi-periodic librating orbits by application of KAM theorems. After showing the existence of De Sitter’s family of linearly stable periodic orbits in the Jupiter–Io–Europa–Ganymede model by averaging and reduction techniques in the Hamiltonian framework, we further discuss the possible extension of this theory to include a fourth satellite Callisto, and establish the existence of a set of positive measure of quasi-periodic librating orbits in both models for almost all choices of masses among which one sufficiently dominates the others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Readers comparing this article with de Sitter (1909) should be careful that De Sitter took \(R=-F_{pert}\).

  2. We shall eventually only consider persistence of invariant objects under \(O(\varepsilon )\)-perturbations. The restriction is made to adapt to this.

  3. Note that, in de Sitter (1909), De Sitter took (for small eccentricities) \(\epsilon _{i}=e_{i}/2, \, i=1,2,3\) instead of \(e_{i}\) in the expression of \(F_{res}\).

  4. In de Sitter (1909), De Sitter stated this as a necessity. This is not evident at all.

  5. We need to impose the assumption that these roots are distinct in order to guarantee that linearly stable periodic orbits can be continued to linearly stable ones for small parameters. De Sitter seems to have overlooked this point, though it does not change the result.

References

  • Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics. Springer, Berlin (2006)

    MATH  Google Scholar 

  • Broer, H.W., Huitema, G., Takens, F.: Unfolding of quasi-periodic tori. Mem. Am. Math. Soc. 83(421), 1–82 (1990)

    MathSciNet  MATH  Google Scholar 

  • Broer, H.W., Hanssmann, H.: On Jupiter and his Galilean satellites: librations of De Sitter’s periodic motion. Submitted (2016)

  • de Sitter, W.: On the periodic solutions of a particular case of the problem of four bodies. KNAW Proc. 11, 682–698 (1909)

    Google Scholar 

  • de Sitter, W.: Outlines of a new mathematical theory of Jupiter’s satellites. Annalen van de sterrewacht te Leiden 12, 1–55 (1925)

    Google Scholar 

  • de Sitter, W.: Jupiter’s Galilean satellites (George Darwin lecture). Mon. Not. R. Astron. Soc. 91, 706–738 (1931)

    Article  ADS  Google Scholar 

  • Féjoz, J.: Quasiperiodic motions in the planar three-body problem. J. Differ. Equ. 183(2), 303–341 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Féjoz, J.: Démonstration du théorème d’Arnold sur la stabilité du système planétaire (d’après Herman). Ergod. Theory Dyn. Syst. 24(5), 1521–1582 (2004). (Revised version)

    Article  Google Scholar 

  • Féjoz, J.: Mouvements périodiques et quasi-périodiques dans le problème des n corps. Habilitation à diriger des recherches. Université Pierre et Marie Curie-Paris VI, Paris (2010)

    Google Scholar 

  • Féjoz, J.: The normal form of Moser and applications. preprint (in revision), (2011)

  • Féjoz, J.: Introduction to KAM theory. (2013)

  • Ferraz-Mello, S.: Dynamics of the Galilean Satellites-an Introductory Treatise. Mathematical and Dynamical Astronomy Series. Universidade de Sao Paulo, Instituto Astronomico e Geofisico, São Paulo (1979)

  • Hadjidemetriou, J.D., Michalodimitrakis, M.: Periodic planetary-type orbits of the general 4-body problem with an application to the satellites of Jupiter. Astron. Astrophys. 93, 204–211 (1981)

    ADS  Google Scholar 

  • Laskar, J., Robutel, P.: Stability of the planetary three-body problem. Celest. Mech. Dyn. Astron. 62(3), 193–217 (1995)

    Article  ADS  MATH  Google Scholar 

  • Moulton, F.R.: Periodic orbits. Carnegie institution of Washington, Washington (1920)

    MATH  Google Scholar 

  • Poincaré, H.: Les Méthodes Nouvelles de la Mécanique Céleste, vol. 1. Gauthier-Villars, Paris (1892)

    MATH  Google Scholar 

  • Tisserand, F.: Traité de Mécanique Céleste, vol. 1. Gauthier-Villars, Paris (1889)

    MATH  Google Scholar 

  • Tisserand, F.: Traité de Mécanique Céleste, vol. 4. Gauthier-Villars, Paris (1896)

    MATH  Google Scholar 

  • Zhao, L.: Quasi-periodic solutions of the spatial lunar three-body problem. Celes. Mech. Dyn. Astron. 119(1), 91–118 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The manuscript was prepared during the stay of LZ in Johann Bernoulli Institute, University of Groningen as a postdoc. We thank the anonymous referees, Sylvio Ferraz Mello and Heinz Hanssmann for their careful reading of the manuscript and for their suggestions of improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broer, H., Zhao, L. De Sitter’s theory of Galilean satellites. Celest Mech Dyn Astr 127, 95–119 (2017). https://doi.org/10.1007/s10569-016-9718-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-016-9718-8

Keywords

Navigation