Skip to main content
Log in

Dry Reforming of Methane Over Cobalt Catalysts: A Literature Review of Catalyst Development

  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Dry reforming of methane produces syngas with desirable H2/CO ratio. Besides noble metal catalysts, the cobalt catalyst performs good activity in this reaction. However, carbon deposition and catalyst deactivation are becoming the main problems inhibiting the scale up of this process into industrial application. Recently, many scientists were trying to increase the activity as well as the stability toward coking by using variants of support, promoter, and combination of metal series catalyst. This paper presents a recent technology of methane dry reforming over cobalt metal-base catalyst, covering the catalyst activity and their resistance of catalyst deactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baiker A (2000) Appl Organomet Chem 14:751

    Article  CAS  Google Scholar 

  2. Omae I (2006) Catal Today 115:33

    Article  CAS  Google Scholar 

  3. Meessen JH, Petersen H (2003) Ullmann’s encyclopedia of industrial chemistry, vol 37, 3rd edn. Wiley, Weinheim

    Google Scholar 

  4. Choi MJ, Cho DH (2008) Clean Air 36:426

    Article  CAS  Google Scholar 

  5. Ruckenstein E, Hu YH (1995) Appl Catal A Gen 133:149

    Article  CAS  Google Scholar 

  6. Richardson JT, Paripatyadar SA (1990) Appl Catal 61:293

    Article  CAS  Google Scholar 

  7. Ross JRH, Keulen ANJV, Hegarty MES, Seshan K (1996) Catal Today 30:193

    Article  CAS  Google Scholar 

  8. Fischer F, Tropsch H (1928) Brennst Chem 3:39

    Google Scholar 

  9. Wang S, Lu GQM, Millar GJ (1996) Energy Fuel 10:896

    Article  CAS  Google Scholar 

  10. Takanabe K, Nagaoka K, Nariai K, Aika K (2005) J Catal 232:268

    Article  CAS  Google Scholar 

  11. Ruckenstein E, Wang HY (2002) J Catal 205:289

    Article  CAS  Google Scholar 

  12. Nagaoka K, Takanabe K, Aika K (2004) Appl Catal A Gen 268:151

    Article  CAS  Google Scholar 

  13. Zhang J, Wang H, Dalai AK (2008) Appl Catal A Gen 339:121

    Article  CAS  Google Scholar 

  14. Ferreira-Aparicio P, Guerrero-Ruiz A, RodrõÂguez-Ramos (1998) Appl Catal A Gen 170:177

    Article  CAS  Google Scholar 

  15. Edwards JH, Maitra AM (1995) Fuel Process Technol 42:269

    Article  CAS  Google Scholar 

  16. Bradforc MCJ, Vannice MA (1999) Rev Catal Eng Sci 41:1

    Article  Google Scholar 

  17. Ashcroft AT, Cheethan AK, Green MLH, Vernom PDF (1991) Nature 352:225

    Article  CAS  Google Scholar 

  18. Ruckenstein E, Wang HY (2000) Appl Catal A Gen 204:257

    Article  CAS  Google Scholar 

  19. Gadalla AM, Bower B (1988) Chem Eng Sci 43:3049

    Article  CAS  Google Scholar 

  20. Takanabe K, Nagaoka K, Nariai K, Aika K (2005) J Catal 230:75

    Article  CAS  Google Scholar 

  21. Matsui N, Anzai K, Akamatsu N, Nakagawa K, Ikenaga N, Suzuki T (1999) Appl Catal A Gen 179:247

    Article  CAS  Google Scholar 

  22. Hu YH, Ruckenstein E (1999) Catal Lett 57:167

    Article  CAS  Google Scholar 

  23. Qin D, Lapszewicz J, Jiang X (1996) J Catal 159:140

    Article  CAS  Google Scholar 

  24. Chen YG, Tomishige K, Fujimoto K (1997) Appl Catal A Gen 165:335

    Article  CAS  Google Scholar 

  25. York APE, Claridge JB, Brungs AJ, Tsang SC, Green MLH (2000) Chem Commun 1:39

    Google Scholar 

  26. Kim JH, Suh DJ, Park TJ, Kim KL (2000) Appl Catal A Gen 197:191

    Article  CAS  Google Scholar 

  27. Rostrup-Nielsen JR (1984) In: Anderson JR, Boudart M (eds) Catalysis science and technology. Springer Verlag, Berlin

    Google Scholar 

  28. Wang HY, Ruckenstein E (2001) Appl Catal A Gen 209:207

    Article  CAS  Google Scholar 

  29. Ji L, Tang S, Zeng HC, Lin J, Tan KL (2001) Appl Catal A Gen 207:247

    Article  CAS  Google Scholar 

  30. Wang HY, Ruckenstein E (2001) Catal Lett 75:13

    Article  CAS  Google Scholar 

  31. Chung K, Massoth FE (1980) J Catal 64:320

    Article  CAS  Google Scholar 

  32. Chin RL, Hercules C (1982) J Phys Chem 86:36

    Article  Google Scholar 

  33. Richardson JT, Vernon LW (1958) J Phys Chem 62:1153

    Article  CAS  Google Scholar 

  34. Nagaoka K, Seshan K, Lercher JA, Aika K (2000) Catal Lett 70:109

    Article  CAS  Google Scholar 

  35. Nagaoka K, Takanabe K, Aika K (2003) Appl Catal A Gen 255:13

    Article  CAS  Google Scholar 

  36. Tauster SJ, Fung SC, Garten RL (1978) J Am Chem Soc 100:170

    Article  CAS  Google Scholar 

  37. Erdoheryl A, Cserenyl J, Solymosi F (1993) J Catal 141:287

    Article  Google Scholar 

  38. Cho JH, Park JH, Chang TS, Seo G, Shin CH (2012) Appl Catal A Gen 417-418:313

    Article  CAS  Google Scholar 

  39. Fan MS, Abdullah AZ, Bhatia S (2009) ChemCatChem 1:192

    Article  CAS  Google Scholar 

  40. Ferreira-Aparicio P, Rodríguez-Ramos I, Anderson J, Guerrero-Ruiz A (2000) Appl Catal A Gen 202:183

    Article  CAS  Google Scholar 

  41. Nagaoka K, Seshan K, Lercher JA, Aika K (2001) Stud Surf Sci Catal 129

  42. Moulijn JA, Diepen AEV, Kapteijn F (2001) Appl Catal A Gen 212:3

    Article  CAS  Google Scholar 

  43. Song SH, Lee SB, Bae JW, Prasac PSS, Jun KW, Shul YG (2009) Catal Lett 129:233

    Article  CAS  Google Scholar 

  44. Song SH, Lee SB, Bae JW, Prasac PSS, Jun KW (2008) Catal Commun 9:2282

    Article  CAS  Google Scholar 

  45. Özkara-Aydınoğlu Ş, Özensoy E, Aksoylu AE (2009) Int J Hydrogen Energy 34:9711

    Article  Google Scholar 

  46. Stagg-Williams SM, Noronha FB, Fendley G, Resasco DE (2000) J Catal 194:240

    Article  CAS  Google Scholar 

  47. Mattos L (2003) Fuel Process Technol 83:147

    Article  CAS  Google Scholar 

  48. NáraySzabó I (1969) Inorganic crystal chemistry. Akadémiai Kiadó, Budapest, p 237

    Google Scholar 

  49. Valentini A, Leite E, Maniette Y, Longo E (2004) Lat Am Appl Res 34:165

    CAS  Google Scholar 

  50. Osaki T (2001) J Catal 204:89

    Article  CAS  Google Scholar 

  51. Besenbacher F, Chorkendorff I, Clausen BS, Hammer B, Molenbroek AM, Nørskov JK, Stensgaarc I (1998) Science 279:1913

    Article  CAS  Google Scholar 

  52. SanJosé-Alonso C, Illán-Gómez MJ, Román-Martínez MC (2011) Catal Today 176:187

    Article  Google Scholar 

  53. Özkara-Aydınoğlu Ş, Aksoylu AE (2009) Catal Commun 34:9711

    Google Scholar 

  54. Yao MH, Bairc RJ, Kunz FW, Hoost TE (1997) J Catal 166:67

    Article  CAS  Google Scholar 

  55. Wagstaff N (1979) J Catal 59:434

    Article  CAS  Google Scholar 

  56. Raab C, Lercher JA, Goodwin JG, Shyu JZ (2005) J Catal 109:23517

    Google Scholar 

  57. Bartholomew CH, Weatherbee GC, Jarvi GA (1980) Chem Eng Commun 5:125

    Article  CAS  Google Scholar 

  58. Choudary V, Rane VH, Rajput A (1997) Appl Catal A Gen 162:235

    Article  Google Scholar 

  59. Choudhary VR, Mondal KC, Choudhary TV (2006) Ind Eng Chem Rev 45:4597

    Article  CAS  Google Scholar 

  60. Choudhary VR, Rajput AM, Prabhakar B, Mamman AS (1998) Fuel 77:1803

    Article  CAS  Google Scholar 

  61. San-José-Alonso C, Juan-Juan J, Illán-Gómez MJ, Román-Martínez MC (2009) Appl Catal A Gen 371:54

    Article  Google Scholar 

  62. Ponec V, Bonc GC (1995) Catalysis by metals alloys. Elsevier Inc, Amsterdam

    Google Scholar 

  63. Sinfelt JH (1983) Bimetallic catalysts: discovery concepts applications. Wiley, New York

    Google Scholar 

  64. Zhang J, Wang H, Dalai AK (2009) Ind Eng Chem Res 48:677

    Article  Google Scholar 

  65. Peca M, Fierro J (2001) Chem Rev 101:1981

    Article  Google Scholar 

  66. Tejuca L, Fierro JT, Ascn J (1989) Adv Catal 36:237

    Article  CAS  Google Scholar 

  67. Pietri E, Barrios A, Gonza′lez O, Goldwasser M, Pe′rez-Zurita M, Cubeiro M (2001) Stud Surf Sci Catal 136:281

    Google Scholar 

  68. Gallego G, Mondragon F, Barrault J, Tatibouet J, Batiotdupeyrat C (2006) Appl Catal A Gen 311:164

    Article  CAS  Google Scholar 

  69. Duprez C, Demicheli MC, Marecot P, Barbier J, Ferretti OA (1990) J Catal 124:324

    Article  CAS  Google Scholar 

  70. Guo J, Lou H, Zhu Y (2003) J Nat Gas Chem 12:17

    CAS  Google Scholar 

  71. Gallego GS, Batiot-Dupeyrat C, Barrault J, Florez E, Mondragón F (2008) Appl Catal A Gen 334:251

    Article  CAS  Google Scholar 

  72. Valderrama G, Kiennemann A, Goldwasser MR (2010) J Power Sources 195:1765

    Article  CAS  Google Scholar 

  73. Iyer MV, Norcio LP, Punnoose A, Kugler EL, Seehra MS (2004) Top Catal 29:197

    Article  CAS  Google Scholar 

  74. Shao H, Kugler EL, Ma W, Dadyburjor DB (2005) Ind Eng Chem Res 44:4914

    Article  CAS  Google Scholar 

  75. Goula MA, Lemonidou AA, Efstathiou AM (1996) J Catal 161:626

    Article  CAS  Google Scholar 

  76. Topalidis A, Petrakis DE, Ladavos A, Loukatzikou L, Pomonis PJ (2007) Catal Today 127:238

    Article  CAS  Google Scholar 

  77. Tsipouriari VA, Verykios XE (2001) Catal Today 64:83

    Article  CAS  Google Scholar 

  78. Tokunaga O, Ogaswara S (1989) React Kinet Catal Lett 39:69

    Article  CAS  Google Scholar 

  79. Takano A, Tagawa T, Goto S (1994) J Chem Eng Jpn 27:723

    Article  Google Scholar 

  80. Sakai Y, Saito T, Sodeawa T, Nozaki (1984) React Kinet Catal Lett 24:253

    Article  CAS  Google Scholar 

  81. Wang HY, Au C (1996) Catal Lett 38:77

    Article  CAS  Google Scholar 

  82. Iyer MV, Norcio LP, Kugler EL, Dadyburjor DB (2003) Ind Eng Chem Res 42:2712

    Article  CAS  Google Scholar 

  83. Richardson JT (1989) Principles of catalyst development. Kluwer Academic Plenum publisher, New York

    Google Scholar 

  84. Gervasini A (1990) J Phys Chem 94:6371

    Article  Google Scholar 

  85. Gervasini A, Aurux A (1991) J Catal 131:190

    Article  CAS  Google Scholar 

  86. Wang N, Chu W, Huang L, Zhang T (2010) J Nat Gas Chem 19:117

    Article  CAS  Google Scholar 

  87. Wang N, Chu W, Zhang T, Zhao XS (2011) Chem Eng J 170:457

    Article  CAS  Google Scholar 

  88. Yaw TC, Amin NAS (2005) Jurnal Teknologi Universiti Sains Malaysia 43:31

    Google Scholar 

  89. Zhang J, Wang H, Dalai AK (2007) J Catal 249: 300

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung-Jae Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budiman, A.W., Song, SH., Chang, TS. et al. Dry Reforming of Methane Over Cobalt Catalysts: A Literature Review of Catalyst Development. Catal Surv Asia 16, 183–197 (2012). https://doi.org/10.1007/s10563-012-9143-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-012-9143-2

Keywords

Navigation