Skip to main content

Advertisement

Log in

In vitro comparative analysis of cryopreservation of undifferentiated mesenchymal cells derived from human periodontal ligament

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Cryopreservation aims to cease all biological functions of living tissues in a reversible and controlled manner, i.e., to permit the recovery of cells by maintaining a high degree of their viability and functional integrity. The objective of this study was to evaluate in vitro the influence of cryopreservation on undifferentiated mesenchymal cells derived from the periodontal ligament of human third molars. Mesenchymal cells were isolated from six healthy teeth and cultured in α-MEM medium supplemented with antibiotics and 15% FBS in a humid atmosphere with 5% CO2 at 37°C. The cells isolated from each tooth were divided into two groups: group I (fresh, non-cryopreserved cells) was immediately cultured, and group II was submitted to cryopreservation for 30 days. The rates of cell adhesion and proliferation were analyzed in the two groups by counting the cells adhered to the wells at 24, 48 and 72 h after plating. The number of cells per well was obtained by counting viable cells in a hemocytometer using the Trypan blue exclusion method. Differences between groups at each time point were evaluated by the Wilcoxon test. The Friedman test was used to determine differences between time points and, if detected, the Wilcoxon test with Bonferroni correction was applied. The results showed no significant difference in the in vitro growth capacity of undifferentiated mesenchymal cells between the two groups. In conclusion, cryopreservation for 30 days had no influence on periodontal ligament mesenchymal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akizuki T, Oda S, Komaki M, Tsuchioka H, Kawakatsu N, Kikuchi A et al (2005) Application of periodontal ligament cell sheet for periodontal regeneration: a pilot study in beagle dogs. J Periodontal Res 40:245–251

    Article  PubMed  Google Scholar 

  • Arceo N, Sauk JJ, Moehring J, Foster RA, Somerman MJ (1991) Human periodontal cells initiate mineral-like nodules in vitro. J Periodontol 62:499–503

    Article  PubMed  CAS  Google Scholar 

  • Bartlett PF, Reade PC (1972) Cryopreservation of developing teeth. Cryobiology 9:205–211

    Article  PubMed  CAS  Google Scholar 

  • Basdra EK, Komposch G (1997) Osteoblast-like properties of human periodontal ligament cells:an in vitro analysis. Eur J Orthod 19:615–621

    Article  PubMed  CAS  Google Scholar 

  • Chen FM, Jin Y (2010) Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. Tissue Eng Part B Rev 16:219–255

    Article  PubMed  CAS  Google Scholar 

  • Chen SC, Marino V, Gronthos S, Bartold PM (2006) Location of putative stem cells in human periodontal ligament. J Periodontal Res 41:547–553

    Article  PubMed  CAS  Google Scholar 

  • Cochran D, Simpson J, Weber H, Buser D (1994) Attachment and growth of periodontal cells on smooth and rough titanium. Int J Oral Maxillofac Implants 9:289–297

    Google Scholar 

  • Ding G, Wang W, Liu Y, An Y, Zhang C, Shi S et al (2010) Effect of cryopreservation on biological and immunological properties of stem cells from apical papilla. J Cell Physiol 223:415–422

    PubMed  CAS  Google Scholar 

  • Gao J, Symons AL, Haase H, Bartold PM (1999) Should cementoblasts express alkaline phosphatase activity? Preliminary study of rat cementoblasts in vitro. J Periodontol 70:951–959

    Article  PubMed  CAS  Google Scholar 

  • Gay IC, Chen S, MacDougall M (2007) Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod Craniofac Res 10:149–160

    Article  PubMed  CAS  Google Scholar 

  • Giannopoulou C, Cimasoni G (1996) Functional characteristics of gingival and periodontal ligament fibroblasts. J Dent Res 75:895–902

    Article  PubMed  CAS  Google Scholar 

  • Gronthos S, Mankani M, Brahim J et al (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci 97:13625–13630

    Article  PubMed  CAS  Google Scholar 

  • Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81:531–535

    Article  PubMed  CAS  Google Scholar 

  • Gronthos S, Mrozik M, Shi S, Bartold PM (2006) Ovine periodontal ligament stem cells: isolation, characterization, and differentiation potential. Calcif Tissue Int 79:310–317

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa M, Yamoto M, Kikuchi A, Okano T, Ishikawa I (2005) Human periodontal ligament sheets can regenerate periodontal ligament tissue in an athymic rat model. Tissue Eng 11:469–478

    Article  PubMed  CAS  Google Scholar 

  • Huang GT (2008) A paradigm shift in endodontic management of immature teeth: conservation of stem cells for regeneration. J Dent 36:379–386

    Article  PubMed  Google Scholar 

  • Huang YH, Yang JC, Wang CW, Lee SY (2010) Dental stem cells and tooth banking for regenerative medicine. J Exp Clin Med 2:111–117

    Article  Google Scholar 

  • Isaka J, Ohazama A, Kobayashi M, Nagashima C, Takiguchi T, Kawasaki H, Tachikawa T, Hasegawa K (2001) Participation of periodontal ligament cells with regeneration of alveolar bone. J Periodontol 72:314–323

    Article  PubMed  CAS  Google Scholar 

  • Ivanovski S, Gronthos S, Shi S, Bartold PM (2006) Stem cells in the periodontal ligament. Oral Dis 12:358–363

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki N, Hamamoto Y, Nakajima T, Irie K, Ozawa H (2004) Periodontal regeneration of transplanted rat molars after cryopreservation. Arch Oral Biol 49:59–69

    Article  PubMed  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  PubMed  CAS  Google Scholar 

  • Laureys W, Beele H, Cornelissen R, Dermaut L (2001) Revascularization after cryopreservation and autotransplantation of immature and mature apicoectomized teeth. Am J Orthod Dentofacial Orthop 119:346–352

    Article  PubMed  CAS  Google Scholar 

  • Leon ER, Iwasaki K, Komaki M, Kojima T, Ishikawa I (2007) Osteogenic effect of interleukin-11 and synergism with ascorbic acid in human periodontal ligament cells. J Periodont Res 42:527–535

    Article  PubMed  CAS  Google Scholar 

  • Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 100:5807–5812

    Article  PubMed  CAS  Google Scholar 

  • Nagatomo K, Komaki M, Sekiya I, Sakaguchi Y, Noguchi K, Oda S et al (2006) Stem cell properties of human periodontal ligament cells. J Periodont Res 41:303–310

    Article  PubMed  CAS  Google Scholar 

  • Ogata Y, Niisato N, Sakurai T, Furuyama S, Sugiya H (1995) Comparison of the characteristics of human gingival fibroblasts and periodontal ligament cells. J Periodontol 66:1025–1031

    Article  PubMed  CAS  Google Scholar 

  • Oh YH, Che ZM, Hong JC, Lee EJ, Lee SJ, Kim J (2005) Cryopreservation of human teeth for future organization of a tooth bank—A preliminary study. Cryobiology 51:322–329

    Article  PubMed  CAS  Google Scholar 

  • Papaccio G, Graziano A, D’Aquino R, Graziano MF, Pirozzi G, Menditti D et al (2006) Long-term cryopreservation of dental pulp stem cells (SBP-DPSCs) and their differentiated osteoblasts: a cell source for tissue repair. J Cell Physiol 208:319–325

    Article  PubMed  CAS  Google Scholar 

  • Perry BC, Perry BC, Zhou D, Wu X, Yang FC, Byers MA et al (2008) Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng Part C Methods 14:149–156

    Article  PubMed  CAS  Google Scholar 

  • Politis C, Vrielinck L, Schepers S, Lambrichts I (1995) Cryopreservation of teeth. Organizational aspects of a tissue bank for tooth tissues. Acta Stomatol Belg 92:149–154

    PubMed  CAS  Google Scholar 

  • Price PJ, Cserepfalvi M (1972) Pulp viability and the homotransplantation of frozen teeth. J Dent Res 51:39–43

    Article  PubMed  CAS  Google Scholar 

  • Schwartz O (1986) Cryopreservation as long-term storage of teeth for transplantation or replantation. Int J Oral Maxillofac Surg 15:30–32

    Article  PubMed  CAS  Google Scholar 

  • Schwartz O, Andreasen JO (1983) Cryopreservation of mature teeth before replantation in monkeys (I). Effect of different cryoprotective agents and freezing devices. Int J Oral Surg 12:425–436

    Article  PubMed  CAS  Google Scholar 

  • Schwartz O, Rank CP (1986) Autotransplantation of cryopreserved tooth in connection with orthodontic treatment. Am J Orthod Dentofacial Orthop 90:67–72

    Article  PubMed  CAS  Google Scholar 

  • Schwartz O, Andreasen JO, Greve T (1985) Cryopreservation before replantation of mature teeth in monkeys. (II). Effect of preincubation, different freezing and equilibration rates and endodontic treatment upon periodontal healing. Int J Oral Surg 14:350–361

    Article  PubMed  CAS  Google Scholar 

  • Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S (2004) Investigation of multipotent stem cells from human periodontal ligament. Lancet 364:149–155

    Article  PubMed  CAS  Google Scholar 

  • Seo BM, Miura M, Sonoyama W, Coppe C, Stanyon R, Shi S (2005) Recovery of stem cells from cryopreserved periodontal ligament. J Dent Res 84:907–912

    Article  PubMed  Google Scholar 

  • Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18:696–704

    Article  PubMed  Google Scholar 

  • Shi S, Robey PG, Gronthos S (2001) Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone 29:532–539

    Article  PubMed  CAS  Google Scholar 

  • Shi S, Bartold PM, Miura M, Seo BM, Robey PG, Gronthos S (2005) The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofacial Res 8:191–199

    Article  CAS  Google Scholar 

  • Silvério KG, Benatti BB, Casati MZ, Sallum EA, Nociti FH Jr (2008) Stem cells: potential therapeutics for periodontal regeneration. Stem Cell Rev 4:13–19

    Article  PubMed  Google Scholar 

  • Sloan AJ, Smith AJ (2007) Stem cells and the dental pulp: potential roles in dentine regeneration and repair. Oral Dis 13:151–157

    Article  PubMed  CAS  Google Scholar 

  • Somerman MJ, Archer SY, Imm GR, Foster RA (1988) A comparative study of human periodontal ligament cells and gingival fibroblasts in vitro. J Dent Res 67:66–70

    Article  PubMed  CAS  Google Scholar 

  • Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C et al (2006) Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One 79:1–8

    Google Scholar 

  • Stevenson DJ, Morgan C, Goldie E, Connel G, Grant MH (2004) Cryopreservation of viable hepatocyte monolayers in cryoprotectant media with high serum content: metabolism of testosterone and kaempherol post-cryopreservation. Cryobiology 49:97–113

    Article  PubMed  CAS  Google Scholar 

  • Temmerman L, De Pauw GA, Beele H, Dermaut LR (2006) Tooth transplantation and cryopreservation: state of the art. Am J Orthod Dentofacial Orthop 129:691–695

    Article  PubMed  Google Scholar 

  • Temmerman L, Dermaut LR, Mil MD, Maele GV, Beele H, De Pauw GA (2008) Influence of cryopreservation on human periodontal ligament cells in vitro. Cell Tissue Bank 9:11–18

    Article  PubMed  CAS  Google Scholar 

  • Temmerman L, Beele H, Dermaut LR, Maele GV, De Pauw EGAM (2010) Influence of cryopreservation on the pulpal tissue of immature third molars in vitro. Cell Tissue Bank 11:281–289

    Article  PubMed  Google Scholar 

  • Woods EJ, Perry BC, Hockema JJ, Larson L, Zhou D, Goebel WS (2009) Optimized cryopreservation method for human dental pulp-derived stem cells and their tissues of origin for banking and clinical use. Cryobiology 59:150–157

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Walboomers XF, Shi S, Fan M, Jansen JA (2006) Multilineage differentiation potential of stem cells derived from human dental pulp after cryopresenvation. Tissue Eng 12:2813–2823

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank BioPol (Laboratório de Biotecnologia de Polímeros Naturais, Departamento de Bioquímica, UFRN) for kindly providing the support on the cell culture equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Augusto Galvão Barboza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasconcelos, R.G., Ribeiro, R.A., Vasconcelos, M.G. et al. In vitro comparative analysis of cryopreservation of undifferentiated mesenchymal cells derived from human periodontal ligament. Cell Tissue Bank 13, 461–469 (2012). https://doi.org/10.1007/s10561-011-9271-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-011-9271-3

Keywords

Navigation