Skip to main content

Advertisement

Log in

Chymase Inhibition and Cardiovascular Protection

  • REVIEW ARTICLE
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Human chymase, an angiotensin II-forming chymotrypsin-like serine proteinase, posses various biological actions mediating through local angiotensin II formation in the tissue level of many cardiovascular organs. Our previous experimental data have shown that chymase inhibitor increased a survival rate of the hamster post-myocardial infarction model with concomitant improvements of the cardiac function and hypertrophy, decreased hamster aortic atherosclerotic lesion induced by a high fat diet and improved hamster diabetic nephropathy decreasing the proteinuria and increased renal antiotensin II levels. Although chymase inhibitor has not yet been applied for clinical use, clinical cardiovascular diseases above mentioned appear to be the target of chymase inhibitor. The related basal and clinical circumstances are discussed in this review article for chymase inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dzau VJ. Molecular and physiological aspects of tissue renin-angiotensin system: emphasis on cardiovascular control. J Hypertens. 1988;6(supplement):S7–12.

    CAS  Google Scholar 

  2. Dzau VJ. Circulating versus local renin-angiotensin system in cardiovascular homeostasis. Circulation. 1988;77:I4–13.

    Article  PubMed  CAS  Google Scholar 

  3. Nishiyama A, Seth DM, Navar LG. Renal interstitial fluid angiotensin i and angiotensin ii concentrations during local angiotensin-converting enzyme inhibition. J Am Soc Nephrol. 2002;13:2207–12.

    Article  PubMed  CAS  Google Scholar 

  4. Urata H, Nishimura H, Ganten D. Chymase-dependent angiotensin ii forming systems in humans. Am J Hypertens. 1996;9:277–84.

    Article  PubMed  CAS  Google Scholar 

  5. Urata H, Boehm KD, Philip A, Kinoshita A, Gabrovsek J, Bumpus FM, et al. Cellular localization and regional distribution of an angiotensin ii-forming chymase in the heart. J Clin Invest. 1993;91:1269–81.

    Article  PubMed  CAS  Google Scholar 

  6. Li M, Liu K, Michalicek J, Angus JA, Hunt JE, Dell’Italia LJ, et al. Involvement of chymase-mediated angiotensin ii generation in blood pressure regulation. J Clin Invest. 2004;114:112–20.

    PubMed  CAS  Google Scholar 

  7. Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358:1547–59.

    Article  PubMed  CAS  Google Scholar 

  8. Pfeffer MA, McMurray JJ, Velazquez EJ, Rouleau JL, Kober L, Maggioni AP, et al. Valsartan in Acute Myocardial Infarction Trial I. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med. 2003;349:1893–906.

    Article  PubMed  CAS  Google Scholar 

  9. Adachi Y, Saito Y, Kishimoto I, Harada M, Kuwahara K, Takahashi N, et al. Angiotensin ii type 2 receptor deficiency exacerbates heart failure and reduces survival after acute myocardial infarction in mice. Circulation. 2003;107:2406–8.

    Article  PubMed  CAS  Google Scholar 

  10. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–9.

    Article  PubMed  CAS  Google Scholar 

  11. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345:851–60.

    Article  PubMed  CAS  Google Scholar 

  12. Iwai M, Liu HW, Chen R, Ide A, Okamoto S, Hata R, et al. Possible inhibition of focal cerebral ischemia by angiotensin ii type 2 receptor stimulation. Circulation. 2004;110:843–8.

    Article  PubMed  CAS  Google Scholar 

  13. Ihara M, Urata H, Kinoshita A, Suzumiya J, Sasaguri M, Kikuchi M, et al. Increased chymase-dependent angiotensin ii formation in human atherosclerotic aorta. Hypertension. 1999;33:1399–405.

    Article  PubMed  CAS  Google Scholar 

  14. Ihara M, Urata H, Shirai K, Ideishi M, Hoshino F, Suzumiya J, et al. High cardiac angiotensin-ii-forming activity in infarcted and non-infarcted human myocardium. Cardiology. 2000;94:247–53.

    Article  PubMed  CAS  Google Scholar 

  15. Uehara Y, Urata H, Sasaguri M, Ideishi M, Sakata N, Tashiro T, et al. Increased chymase activity in internal thoracic artery of patients with hypercholesterolemia. Hypertension. 2000;35:55–60.

    Article  PubMed  CAS  Google Scholar 

  16. Murakami K, Uehara Y, Abe S, Inoue Y, Ideishi M, Saku K, et al. Positive correlation between chymase-like angiotensin ii-forming activity in mononuclear cells and serum cholesterol level. J Cardiol. 2007;50:291–8.

    PubMed  Google Scholar 

  17. Okamura K, Inoue Y, Uehara Y, Maruyama S, Sumi S, Furuyama S, et al. Chymase dependent angiotensin ii-forming activity in the circulating mononuclear leukocyte increases post acute myocardial infarction the 73rd annual scientific meeting of the japanese circulation society. Circ J. 2009;73:490.

    Article  Google Scholar 

  18. Hoshino F, Urata H, Inoue Y, Saito Y, Yahiro E, Ideishi M, et al. Chymase inhibitor improves survival in hamsters with myocardial infarction. J Cardiovasc Pharmacol. 2003;41 Suppl 1:S11–8.

    PubMed  CAS  Google Scholar 

  19. Wei CC, Hase N, Inoue Y, Bradley EW, Yahiro E, Li M, et al. Mast cell chymase limits the cardiac efficacy of ang i-converting enzyme inhibitor therapy in rodents. J Clin Invest. 2011;120:1229–39.

    Article  Google Scholar 

  20. Shiota N, Jin D, Takai S, Kawamura T, Koyama M, Nakamura N, et al. Chymase is activated in the hamster heart following ventricular fibrosis during the chronic stage of hypertension. FEBS Lett. 1997;406:301–4.

    Article  PubMed  CAS  Google Scholar 

  21. Uehara Y, Urata H, Ideishi M, Arakawa K, Saku K. Chymase inhibition suppresses high-cholesterol diet-induced lipid accumulation in the hamster aorta. Cardiovasc Res. 2002;55:870–6.

    Article  PubMed  CAS  Google Scholar 

  22. Maeda Y, Inoguchi T, Takei R, Sawada F, Sasaki S, Fujii M, et al. Inhibition of chymase protects against diabetes-induced oxidative stress and renal dysfunction in hamsters. Am J Physiol. 2010;299:F1328–38.

    CAS  Google Scholar 

  23. Chandrasekharan UM, Sanker S, Glynias MJ, Karnik SS, Husain A. Angiotensin ii-forming activity in a reconstructed ancestral chymase. Science. 1996;271:502–5.

    Article  PubMed  CAS  Google Scholar 

  24. Akasu M, Urata H, Kinoshita A, Sasaguri M, Ideishi M, Arakawa K. Differences in tissue angiotensin ii-forming pathways by species and organs in vitro. Hypertension. 1998;32:514–20.

    Article  PubMed  CAS  Google Scholar 

  25. Wei CC, Hase N, Inoue Y, Bradley EW, Yahiro E, Li M, et al. Mast cell chymase limits the cardiac efficacy of ang i-converting enzyme inhibitor therapy in rodents. J Clin Invest. 2010;120:1229–39.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidenori Urata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tojo, H., Urata, H. Chymase Inhibition and Cardiovascular Protection. Cardiovasc Drugs Ther 27, 139–143 (2013). https://doi.org/10.1007/s10557-013-6450-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-013-6450-4

Keywords

Navigation