Skip to main content
Log in

Two-dimensional and three-dimensional left ventricular deformation analysis: a study in competitive athletes

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) speckle-tracking echocardiography (STE) has clarified functional adaptations accompanying the morphological features of ‘athlete’s heart’. However, 2D STE has some limitations, potentially overcome by three-dimensional (3D) STE. Unfortunately, discrepancies between 2D- and 3D STE have been described. We therefore sought to evaluate whether dimensional and functional differences exist between athletes and controls and whether 2D and 3D left ventricular (LV) strains differ in athletes. One hundred sixty-one individuals (91 athletes, 70 controls) were analysed. Athletes were members of professional sports teams. 2D and 3D echocardiography and STE were used to assess LV size and function. Bland–Altman analysis was used to estimate the level of agreement between 2D and 3D STE. Athletes had greater 2D and 3D-derived LV dimensions and LV mass (p < 0.0001 for all), while 2D- and 3D-derived LV ejection fraction did not differ as compared with controls (p = 0.82 and p = 0.89, respectively). Longitudinal, radial, and circumferential strains did not differ between athletes and controls, neither by 2D nor by 3D STE. Three-dimensional longitudinal and circumferential strain values were lower (p < 0.0001 for both) while 3D radial strain was greater, as compared with 2D STE (p < 0.001). Bland–Altman plots demonstrated the presence of an absolute systematic error between 2D and 3D STE to analyse LV myocardial deformation. 3D STE is a useful and feasible technique for the assessment of myocardial deformation with the potential to overcome the limitations of 2D imaging. However, discrepancies exist between 2D and 3D-derived strain suggesting that 2D and 3D STE are not interchangeable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pluim BM, Zwinderman AH, van der Laarse A, van der Wall EE (2000) The athlete’s heart. A meta-analysis of cardiac structure and function. Circulation 101:336–344

    Article  CAS  PubMed  Google Scholar 

  2. Pelliccia A, Maron BJ, Spataro A, Proschan MA, Spirito P (1991) The upper limit of physiological cardiac hypertrophy in highly trained elite athletes. N Engl J Med 31:295–301

    Article  Google Scholar 

  3. Caselli S, Di Paolo FM, Pisicchio C, Di Pietro R, Quattrini FM, Di Giacinto B et al (2011) Three-dimensional echocardiographic characterization of left ventricular remodeling in Olympic athletes. Am J Cardiol 108:41–47

    Article  Google Scholar 

  4. Richand V, Lafitte S, Reant P, Serri K, Lafitte M, Brette S et al (2007) An ultrasound speckle tracking (two-dimensional strain) analysis of myocardial deformation in professional soccer players compared with healthy subjects and hypertrophic cardiomyopathy. Am J Cardiol 100:128–132

    Article  PubMed  Google Scholar 

  5. Caselli S, Montesanti D, Autore C, Di Paolo FM, Pisicchio C, Squeo MR et al (2015) Patterns of left ventricular longitudinal strain and strain rate in Olympic athletes. J Am Soc Echocardiogr 28:245–253

    Article  PubMed  Google Scholar 

  6. Nottin S, Doucende G, Schuster-Beck I, Dauzat M, Obert P (2008) Alteration in left ventricular normal and shear strains evaluated by 2D-strain echocardiography in the athlete’s heart. J Physiol 586:4721–4733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Butz T, van Buuren F, Mellwing KP, Langer C, Plehn G, Meissner A, Trappe HJ, Horstkotte D, Faber L (2011) Two-dimensional strain analysis of the global and regional myocardial function for the differentiation of pathologic and physiologic left ventricular hypertrophy: a study in athletes and in patients with hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 27:91–100

    Article  CAS  PubMed  Google Scholar 

  8. Cappelli F, Toncelli L, Cappelli B, De Luca A, Stefani L, Maffuli N, Galati G (2010) Adaptative or maladaptative hypertrophy, different spatial distribution of myocardial contraction. Clin Physiol Funct Imaging 30:6–12

    Article  PubMed  Google Scholar 

  9. Galderisi M, Lomoriello VS, Santoro A, Esposito R, Olibet M, Raia R et al (2010) Differences of myocardial systolic deformation and correlates of diastolic function in competitive rowers and young hypertensives: a speckle-tracking echocardiography study. J Am Soc Echocardiogr 23:1190–1198

  10. Simsek Z, Hakan Tas M, Degirmenci H, Gokhan Yazici A, Ipek E, Duman H, Gundogdu F, Karakelleoglu S, Senocak H (2013) Speckle tracking echocardiographic analysis of left ventricular systolic and diastolic function of young elite athletes with eccentric and concentric type of cardiac remodelling. Echocardiography 30:1202–1208

    Article  PubMed  Google Scholar 

  11. Soullier C, Obert P, Doucende G, Nottin S, Cade S, Pereze-Martin A, Messner-Pellenc P, Schuster I (2012) Exercise response in hypertrophic cardiomyopathy: blunted left ventricular deformational and twisting reserve with altered systolic–diastolic coupling. Circ Cardiovasc Imaging 5:324–332

    Article  PubMed  Google Scholar 

  12. Weiner RB, Hutter AM Jr, Wang F, Kim J, Weyman AE, Wood MJ et al (2010) The impact of endurance exercise training on left ventricular torsion. JACC Cardiovasc Imaging 3:1001–1009

    Article  PubMed  Google Scholar 

  13. D’Ascenzi F, Pelliccia A, Natali BM, Zacà V, Cameli M, Alvino F, Malandrino A, Palmitesta P, Zorzi A, Corrado D, Bonifazi M, Mondillo S (2014) Morphological and functional adaptation of left and right atria induced by training in highly trained female athletes. Circ Cardiovasc Imaging 7:222–229

    Article  PubMed  Google Scholar 

  14. Monte IP, Mangiafico S, Buccheri S, Bottari VE, Lavanco V, Arcidiacono AA, Lavanco V, Privitera F, Leggio S, Deste W, Tamburino C (2015) Myocardial deformational adaptations to different forms of training: a real-time three-dimensional speckle tracking echocardiographic study. Heart Vessels 30:386–395

    Article  PubMed  Google Scholar 

  15. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L et al (2015) Recommendations for chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging (2015). Eur Heart J Cardiovasc Imaging 16:233–270

    Article  PubMed  Google Scholar 

  16. De Castro S, Caselli S, Maron M, Pelliccia A, Cavarretta E, Maddukuri P et al (2007) Left ventricular remodelling index (LVRI) in various pathological conditions: a real-time three-dimensional echocardiographic study. Heart 93:205–209

    Article  PubMed  Google Scholar 

  17. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA et al (2009) Recommendations of evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr 10:165–193

    Article  PubMed  Google Scholar 

  18. Yu CM, Sanderson JE, Marwick TH, Oh JK (2007) Tissue Doppler imaging a new prognosticator for cardiovascular Disease. J Am Coll Cardiol 49:1903–1914

    Article  PubMed  Google Scholar 

  19. Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfiled MM et al (2000) Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 102:1788–1794

    Article  CAS  PubMed  Google Scholar 

  20. Oxborough D, Sharma S, Shave R, Whyte G, Birch K, Artis N et al (2012) The right ventricle of the endurance athletes: the relationship between morphology and function. J Am Soc Echocardiogr 25:263–271

    Article  PubMed  Google Scholar 

  21. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G et al (2011) Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur J Echocardiogr 12:167–205

    Article  PubMed  Google Scholar 

  22. Burns AT, La Gerche A, Prior DL, Macisaac AI (2009) Left ventricular untwisting is an important determinant of early diastolic function. JACC Cardiovasc Imaging 2:709–716

    Article  PubMed  Google Scholar 

  23. Monaghan MJ (2006) Role of real time 3D echocardiography in evaluating the left ventricle. Heart 92:131–136

    Article  PubMed  PubMed Central  Google Scholar 

  24. Seo Y, Ishizu T, Enomoto Y, Sugimori H, Aonuma K (2011) Endocardial surface area tracking for assessment of regional LV wall deformation with 3D speckle tracking imaging. JACC Cardiovasc Imaging 4:358–365

    Article  PubMed  Google Scholar 

  25. Vitarelli A, Capotosto L, Placanica G, Caranci F, Pergolini M, Zardo F, Martino F, De Chiara S, Vitarelli M (2013) Comprehensive assessment of biventricular function and aortic stiffness in athletes with different forms of training by three-dimensional echocardiography and strain imaging. Eur Heart J Cardiovasc Imaging 14:1010–1020

    Article  PubMed  Google Scholar 

  26. Maciver DH (2011) A new method for quantification of left ventricular systolic function using a corrected ejection fraction. Eur J Echocardiogr 12:228–234

    Article  PubMed  Google Scholar 

  27. Urbano-Moral JA, Rowin EJ, Maron MS, Crean A, Pandian NG (2014) Investigation of global and regional myocardial mechanics with 3-dimensional speckle tracking echocardiography and relations to hypertrophy and fibrosis in hypertrophic cardiomyopathy. Circ Cardiovasc Imaging 7:11–19

    Article  PubMed  Google Scholar 

  28. D’Ascenzi F, Pelliccia A, Alvino F, Solari M, Loffreno A, Cameli M, Focardi M, Bonifazi M, Mondillo S (2015) Effects of training on LV strain in competitive athletes. Heart 101(22):1834–1839. doi:10.1136/heartjnl-2015-308189

    Article  PubMed  Google Scholar 

  29. Kasikcioglu E, Oflaz H, Akhan H, Kayserilioglu A, Mercanoglu F, Umman B et al (2004) Left ventricular remodeling and aortic distensibility in elite power athletes. Heart Vessels 19:183–188

    PubMed  Google Scholar 

  30. Galderisi M, Esposito R, Schiano-Lomoriello V, Santoro A, Ippolito R, Schiattarella P et al (2012) Correlates of global area strain in native hypertensive patients: a three-dimensional speckle-tracking echocardiography study. Eur Heart J Cardiovasc Imaging 13:730–738

    Article  PubMed  Google Scholar 

  31. Wu VCC, Takeuchi M, Otani K, Haruki N, Yoshitani H, Tamura M et al (2013) Effect of through-plane and twisting motion on left ventricular strain calculation: direct comparison between two-dimensional and three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr 26:1274–1281

    Article  PubMed  Google Scholar 

  32. Reant P, Barbot L, Touche C, Dijos M, Arsac F, Pillois X et al (2012) Evaluation of global left ventricular systolic function using three-dimensional echocardiography speckle-tracking strain parameters. J Am Soc Echocardiogr 25:68–79

    Article  PubMed  Google Scholar 

  33. Saito K, Okura H, Watanabe N, Hayashida A, Obase K, Imai K et al (2009) Comprehensive evaluation of left ventricular strain using speckle tracking echocardiography in normal adults: comparison of three-dimensional and two-dimensional approaches. J Am Soc Echocardiogr 21:1025–1030

    Article  Google Scholar 

  34. Xu TY, Sun JP, Lee AP, Yang XS, Qiao Z, Luo X et al (2014) Three-dimensional speckle strain echocardiography is more accurate and efficient than 2D strain in the evaluation of left ventricular function. Int J Cardiol 176:360–366

    Article  PubMed  Google Scholar 

  35. Maffessanti F, Nesser HJ, Weinert L, Steringer-Mascherbauer R, Niel J, Gorissen W et al (2009) Quantitative evaluation of regional left ventricular function using three-dimensional speckle tracking echocardiography in patients with and without heart disease. Am J Cardiol 104: 1755–1762

    Article  PubMed  Google Scholar 

  36. Hayat D, Kloeckner M, Nahum J, Ecochard-Dugelay E, Dubois-RANDé JL, Jean-François D et al (2012) Comparison of real-time three-dimensional speckle tracking to magnetic resonance imaging in patients with coronary heart disease. Am J Cardiol 109:180–186

    Article  PubMed  Google Scholar 

  37. Negishi K, Negishi T, Agler DA, Plana JC, Marwick TH (2012) Role of temporal resolution in selection of the appropriate strain technique for evaluation of subclinical myocardial dysfunction. Echocardiography 29:334–339

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Pietro Piu for his support in the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio D’Ascenzi.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Ascenzi, F., Solari, M., Mazzolai, M. et al. Two-dimensional and three-dimensional left ventricular deformation analysis: a study in competitive athletes. Int J Cardiovasc Imaging 32, 1697–1705 (2016). https://doi.org/10.1007/s10554-016-0961-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-016-0961-6

Keywords

Navigation