Skip to main content
Log in

Scalp Current Density Mapping in the Analysis of Mismatch Negativity Paradigms

  • Review
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

MMN oddball paradigms are frequently used to assess auditory (dys)functions in clinical populations, or the influence of various factors (such as drugs and alcohol) on auditory processing. A widely used procedure is to compare the MMN responses between two groups of subjects (e.g. patients vs controls), or between experimental conditions in the same group. To correctly interpret these comparisons, it is important to take into account the multiple brain generators that produce the MMN response. To disentangle the different components of the MMN, we describe the advantages of scalp current density (SCD)—or surface Laplacian—computation for ERP analysis. We provide a short conceptual and mathematical description of SCDs, describe their properties, and illustrate with examples from published studies how they can benefit MMN analysis. We conclude with practical tips on how to correctly use and interpret SCDs in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. A « dipole-like » generator is used for sake of simplicity in Fig. 1. The SCD approach does not make any assumption about the nature, number, position or orientation of the intracerebral generators.

References

  • Aguera PE, Jerbi K, Caclin A, Bertrand O (2011) ELAN: a software package for analysis and visualization of MEG, EEG, and LFP signals. Comput Intell Neurosci 2011:158970

    PubMed Central  PubMed  Google Scholar 

  • Alcaini M, Giard MH, Thevenet M, Pernier J (1994) Two separate frontal components in the N1 wave of the human auditory evoked response. Psychophysiology 31:611–615

    Article  CAS  PubMed  Google Scholar 

  • Alho K (1995) Cerebral generators of the mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear Hear 16(1):38–51

    Article  CAS  PubMed  Google Scholar 

  • Araki T, Kasai K, Nakagome K, Fukuda M, Itoh K, Koshida I, Kato N, Iwanami A (2005) Brain electric activity for active inhibition of auditory irrelevant information. Neurosci Lett 374(1):11–16

    Article  CAS  PubMed  Google Scholar 

  • Baldeweg T, Klugman A, Gruzelier JH, Hirsch SR (2002) Impairment in frontal but not temporal components of mismatch negativity in schizophrenia. Int J Psychophysiol 43:111–122

    Article  PubMed  Google Scholar 

  • Bar M, Kassam KS, Ghuman AS, Boshyan J, Schmid AM, Dale AM, Hämäläinen MS, Marinkovic K, Schacter DL, Rosen BR, Halgren E (2006) Top-down facilitation of visual recognition. Proc Natl Acad Sci USA 103(2):449–454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bender S, Oelkers-Ax R, Resch F, Weisbrod M (2006) Frontal lobe involvement in the processing of meaningful auditory stimuli develops during childhood and adolescence. Neuroimage 33(2):759–773

    Article  PubMed  Google Scholar 

  • Bender S, Oelkers-Ax R, Hellwig S, Resch F, Weisbrod M (2008) The topography of the scalp-recorded visual N700. Clin Neurophysiol 119(3):587–604

    Article  CAS  PubMed  Google Scholar 

  • Bendixen A, Prinz W, Horváth J, Trujillo-Barreto NJ, Schröger E (2008) Rapid extraction of auditory feature contingencies. Neuroimage 41(3):1111–1119

    Article  PubMed  Google Scholar 

  • Besle J, Fort A, Delpuech C, Giard MH (2004) Bimodal speech: early suppressive effects in the human auditory cortex. Eur J Neurosci 20(8):2225–2234

    Article  PubMed Central  PubMed  Google Scholar 

  • Besle J, Fort A, Giard MH (2005) Is the auditory sensory memory sensitive to visual information? Exp Brain Res 166:337–344

    Article  PubMed Central  PubMed  Google Scholar 

  • Besle J, Hussain Z, Giard MH, Bertrand O (2013) The representation of audiovisual regularities in the human brain. J Cogn Neurosci 25:365–373

    Article  PubMed  Google Scholar 

  • Bidet-Caulet A, Bertrand O (2005) Dynamics of a temporo-fronto-parietal network during sustained spatial or spectral auditory processing. J Cogn Neurosci 17(11):1691–1703

    Article  PubMed  Google Scholar 

  • Cincotti F, Babiloni C, Miniussi C, Carducci F, Moretti D, Salinari S, Pascual-Marqui R, Rossini PM, Babiloni F (2004) EEG deblurring techniques in a clinical context. Methods Inf Med 43(1):114–117

    CAS  PubMed  Google Scholar 

  • Clery H, Roux S, Besle J, Giard MH, Bruneau N, Gomot M (2012) Electrophysiological correlates of automatic visual change detection in school-age children. Neuropsychologia 50(2012):979–987

    Article  PubMed  Google Scholar 

  • Clery H, Bonnet-Brilhault F, Lenoir P, Barthelemy C, Bruneau N, Gomot M (2013) Atypical visual change processing in children with autism: an electrophysiological study. Psychophysiology 50(3):240–252

    Article  PubMed  Google Scholar 

  • Deouell L (2007) The frontal generator of the mismatch negativity revisited. J Psychophysiol 21(3–4):188–203

    Article  Google Scholar 

  • Deouell L, Bentin S, Giard MH (1998) Mismatch negativity in dichotic listening: evidence for interhemispheric differences and multiple generators. Psychophysiology 35:355–365

    Article  CAS  PubMed  Google Scholar 

  • Doniger GM, Foxe JJ, Murray MM, Higgins BA, Snodgrass JG, Schroeder CE, Javitt DC (2000) Activation timecourse of ventral visual stream object-recognition areas: high density electrical mapping of perceptual closure processes. J Cogn Neurosci 12(4):615–621

    Article  CAS  PubMed  Google Scholar 

  • Fahrenfort JJ, Scholte HS, Lamme VA (2007) Masking disrupts reentrant processing in human visual cortex. J Cogn Neurosci 19(9):1488–1497

    Article  CAS  PubMed  Google Scholar 

  • Fort A, Delpuech C, Pernier J, Giard MH (2002) Dynamics of cortico-subcortical crossmodal operations involved in audio-visual object detection in humans. Cereb Cortex 12:1031–1039

    Article  PubMed  Google Scholar 

  • Foxe JJ, Simpson GV (2002) Flow of activation from V1 to frontal cortex in humans. A framework for defining “early” visual processing. Exp Brain Res 142(1):139–150

    Article  PubMed  Google Scholar 

  • Foxe JJ, Morocz IA, Murray MM, Higgins BA, Javitt DC, Schroeder CE (2000) Multisensory auditory-somatosensory interactions in early cortical processing revealed by high-density electrical mapping. Brain Res Cogn Brain Res 10(1–2):77–83

    Article  CAS  PubMed  Google Scholar 

  • George N, Evans J, Fiori N, Davidoff J, Renault B (1996) Brain events related to normal and moderately scrambled faces. Brain Res Cogn Brain Res 4(2):65–76

    Article  CAS  PubMed  Google Scholar 

  • Giard MH, Peronnet F (1999) Auditory-visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study. J Cogn Neurosci 11(5):473–490

    Article  CAS  PubMed  Google Scholar 

  • Giard MH, Perrin F, Pernier J, Bouchet J (1990) Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study. Psychophysiology 27:627–640

    Article  CAS  PubMed  Google Scholar 

  • Giard MH, Perrin F, Echallier JF, Thevenet M, Froment JC, Pernier J (1994) Dissociation of temporal and frontal components in the human auditory N1 wave: a scalp current density and dipole model analysis. Electroencephalogr Clin Neurophysiol 92:238–252

    Article  CAS  PubMed  Google Scholar 

  • Gómez Gonzales CM, Clark VP, Fan S, Luck SJ, Hillyard SA (1994) Sources of attention-sensitive visual event-related potentials. Brain Topogr 7(1):41–51

    Article  Google Scholar 

  • Gómez CM, Delinte A, Vaquero E, Cardoso MJ, Vázquez M, Crommelinck M, Roucoux A (2001) Current source density analysis of CNV during temporal gap paradigm. Brain Topogr 13(3):149–159

    Article  PubMed  Google Scholar 

  • Gomot M, Giard MH, Roux S, Barthelemy C, Bruneau N (2000) Maturation of frontal and temporal components of mismatch negativity (MMN) in children. NeuroReport 11:3109–3112

    Article  CAS  PubMed  Google Scholar 

  • Gomot M, Giard MH, Adrien JL, Barthelemy C, Bruneau N (2002) Hypersensitivity to acoustic change in children with autism: electrophysiological evidence of left frontal cortex dysfunctioning. Psychophysiology 39:577–584

    Article  PubMed  Google Scholar 

  • Gomot M, Bernard FA, Davis MH, Belmonte MK, Ashwin C, Bullmore ET, Baron-Cohen S (2006) Change detection in children with autsm: an auditory event-related fMRI study. Neuroimage 29(2):475–484

    Article  PubMed  Google Scholar 

  • Gomot M, Bruneau N, Laurent J-P, Barthélémy C, Saliba E (2007) Left temporal impairment of auditory information processing in prematurely born 9-year-old children: an electrophysiological study. Int J Psychophysiol 64:123–129

    Article  PubMed  Google Scholar 

  • Graux J, Gomot M, Roux S, Bonnet-Brilhault F, Camus V, Bruneau N (2013) My voice or yours? An electrophysiological study. Brain Topogr 26:72–82

    Article  PubMed  Google Scholar 

  • Hada M, Porjesz B, Chorlian DB, Begleiter H, Polich J (2001) Auditory P3a deficits in male subjects at high risk for alcoholism. Biol Psychiatry 49(8):726–738

    Article  CAS  PubMed  Google Scholar 

  • He X, Humphreys G, Fan S, Chen L, Han S (2008) Differentiating spatial and object-based effects on attention: an event-related brain potential study with peripheral cueing. Brain Res 1245:116–125

    Article  CAS  PubMed  Google Scholar 

  • Hjorth B (1975) An online transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalogr Clin Neurophysiol 39:526–530

    Article  CAS  PubMed  Google Scholar 

  • Holeckova I, Fischer C, Giard MH, Delpuech C, Morlet D (2006) Brain responses to a subject’s own name uttered by a familiar voice. Brain Res 1082(1):142–152

    Article  CAS  PubMed  Google Scholar 

  • Hommet C, Vidal J, Roux S, Blanc R, Barthez M-A, De Becque B, Barthelemy C, Bruneau N, Gomot M (2009) Topography of syllable change-detection electrophysiological indices in children and adults with reading disabilities. Neuropsychologia 47(3):761–770

    Article  PubMed  Google Scholar 

  • Jääskeläinen IP, Pekkonen E, Hirvonen J, Sillanaukee P, Näätänen R (1996) Mismatch negativity subcomponents and ethyl alcohol. Biol Psychol 43:13–25

    Article  PubMed  Google Scholar 

  • Jääskeläinen IP, Ahveninen J, Bonmassar G, Dale AM, Ilmoniemi RJ, Levänen S, Lin FH, May P, Melcher J, Stufflebeam S, Tiitinen H, Belliveau JW (2004) Human posterior auditory cortex gates novel sounds to consciousness. Proc Natl Acad Sci USA 101(17):6809–6814

    Article  PubMed Central  PubMed  Google Scholar 

  • Jemel B, Coutya J, Langer C, Roy S (2009) From upright to upside-down presentation: a spatio-temporal ERP study of the parametric effect of rotation on face and house processing. BMC Neurosci 10:100

    Article  PubMed Central  PubMed  Google Scholar 

  • Ji J, Porjesz B, Begleiter H, Chorlian D (1999) P300: the similarities and differences in the scalp distribution of visual and auditory modality. Brain Topogr 11(4):315–327

    Article  CAS  PubMed  Google Scholar 

  • Kaiser J, Bertrand O (2003) Dynamics of working memory for moving sounds: an event-related potential and scalp current density study. Neuroimage 19(4):1427–1438

    Article  PubMed  Google Scholar 

  • Kasai K, Nakagome K, Itoh K, Koshida I, Hata A, Iwanami A, Fukuda M, Kato N (2002) Impaired cortical network for preattentive detection of change in speech sounds in schizophrenia: a high-resolution event-related potential study. Am J Psychiatry 159(4):546–553

    Article  PubMed  Google Scholar 

  • Kayser J, Tenke CE, Kroppmann CJ, Fekri S, Alschuler DM, Gates NA, Gil R, Harkavy-Friedman JM, Jarskog LF, Bruder GE (2010) Current source density (CSD) old/new effects during recognition memory for words and faces in schizophrenia and in healthy adults. Int J Psychophysiol 75(2):194–210

    Article  PubMed Central  PubMed  Google Scholar 

  • Kayser J, Tenke CE, Kroppmann CJ, Alschuler DM, Fekri S, Gil R, Jarskog LF, Harkavy-Friedman JM, Bruder GE (2012) A neurophysiological deficit in early visual processing in schizophrenia patients with auditory hallucinations. Psychophysiology 49(9):1168–1178

    Article  PubMed Central  PubMed  Google Scholar 

  • Klein C, Berg P, Rockstroh B, Andresen B (1999) Topography of the auditory P300 in schizotypal personality. Biol Psychiatry 45(12):1612–1621

    Article  CAS  PubMed  Google Scholar 

  • Luck SJ, Hillyard SA (1994) Electrophysiological correlates of feature analysis during visual search. Psychophysiology 31(3):291–308

    Article  CAS  PubMed  Google Scholar 

  • Mangun GR, Hillyard SA, Luck SJ (1993) Electrocortical substrates of visual selective attention. In: Meyer D, Kornblum S (eds) Attention and performance XIV. MIT Press, Cambridge, MA, pp 219–243

    Google Scholar 

  • Marco-Pallarés J, Ruffini G, Polo MD, Gual A, Escera C, Grau C (2007) Mismatch negativity impairment associated with alcohol consumption in chronic alcoholics: a scalp current density study. Int J Psychophysiol 65(1):51–57

    Article  PubMed  Google Scholar 

  • Martin BA, Shafer VL, Morr ML, Kreuzer JA, Kurtzberg D (2003) Maturation of mismatch negativity: a scalp current density analysis. Ear Hear 24(6):463–471

    Article  PubMed  Google Scholar 

  • May PJ, Tiitinen H (2010) Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology 47(1):66–122

    Article  PubMed  Google Scholar 

  • McKay DM (1983) On line source density computation with a minimum of electrodes. Electroencephalogr Clin Neurophysiol 56:696–698

    Article  Google Scholar 

  • Michel CM, Murray MM (2012) Towards the utilization of EEG as a brain imaging tool. Neuroimage 61(2):371–385

    Article  PubMed  Google Scholar 

  • Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 20(4):249–264

    Article  PubMed  Google Scholar 

  • Näätänen R (1990) The role of attention in auditory information processing as revealed by event-elated potentials and other brain measures of cognitive function. Behav Brain Sci 13:201–288

    Article  Google Scholar 

  • Näätänen R, Jacobsen T, Winkler I (2005) Memory-based or afferent processes in mismatch negativity (MMN): a review of the evidence. Psychophysiology 42(1):25–32

    Article  PubMed  Google Scholar 

  • Näätänen R, Kujala T, Escera C, Baldeweg T, Kreegipuu K, Carlson S, Ponton C (2012) The mismatch negativity (MMN)—a unique window to disturbed central auditory processing in ageing and different clinical conditions. Clin Neurophysiol 123(3):424–458

    Article  PubMed  Google Scholar 

  • Nunez PL (1981) Electric fields of the brain. Oxford University Press, New York, pp 196–203

    Google Scholar 

  • Nunez PL, Westdorp AF (1994) The surface Laplacian, high resolution EEG and controversies. Brain Topogr 6(3):221–226

    Article  CAS  PubMed  Google Scholar 

  • Paavilainen P, Mikkonen M, Kilpeläinen M, Lehtinen R, Saarela M, Tapola L (2003) Evidence for the different additivity of the temporal and frontal generators of mismatch negativity: a human auditory event-related potential study. Neurosci Lett 349:79–82

    Article  CAS  PubMed  Google Scholar 

  • Pernier J, Perrin F, Bertrand O (1988) Scalp current density fields: concept and properties. Electroencephalogr Clin Neurophysiol 69:385–389

    Article  CAS  PubMed  Google Scholar 

  • Perrin F, Bertrand O, Pernier J (1987a) Scalp current density mapping: value and estimation from potential data. IEEE Trans Biomed Eng 34(4):283–288

    Article  CAS  PubMed  Google Scholar 

  • Perrin F, Pernier J, Bertrand O, Giard MH, Echallier JF (1987b) Mapping of scalp potentials by surface spline interpolation. Electroencephalogr Clin Neurophysiol 66:75–81

    Article  CAS  PubMed  Google Scholar 

  • Perrin F, Pernier J, Bertrand O, Echallier JF (1989) Spherical splines for scalp potential and current density mapping. Electroencephalogr Clin Neurophysiol 72:184–187

    Article  CAS  PubMed  Google Scholar 

  • Pieszek M, Widmann A, Gruber T, Schröger E (2013) The human brain maintains contradictory and redundant auditory sensory predictions. PLoS ONE 8(1):e53634

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Restuccia D, Della Marca G, Marra C, Rubino M, Valeriani M (2005) Attentional load of the primary task influences the frontal but not the temporal generators of mismatch negativity. Cogn Brain Res 25:891–899

    Article  Google Scholar 

  • Rinne T, Alho K, Ilmoniemi RJ, Virtanen J, Näätänen R (2000) Separate time behaviors of the temporal and frontal mismatch negativity sources. NeuroImage 12:14–19

    Article  CAS  PubMed  Google Scholar 

  • Saint-Amour D, De Sanctis P, Molholm S, Ritter W, Foxe JJ (2007) Seeing voices: high-density electrical mapping and source-analysis of the multisensory mismatch negativity evoked during the McGurk illusion. Neuropsychologia 45(3):587–597

    Article  PubMed Central  PubMed  Google Scholar 

  • Sallinen M, Lyytinen H (1997) Mismatch negativity during objective and subjective sleepiness. Psychophysiology 34:694–702

    Article  CAS  PubMed  Google Scholar 

  • Saron CD, Schroeder CE, Foxe JJ, Vaughan HG Jr (2001) Visual activation of frontal cortex: segregation from occipital activity. Brain Res Cogn Brain Res 12(1):75–88

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Yabe H, Hiruma T, Sutoh T, Shinozaki N, Nashida T, Kaneko S (2000) The effect of deviant stimulus probability on the human mismatch process. NeuroReport 11:3703–3708

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Yabe H, Todd J, Michie P, Shinozaki N, Sutoh T et al (2003) Impairment in activation of a frontal attention switch mechanism in schizophrenic patients. Biol Psychol 62:49–63

    Article  PubMed  Google Scholar 

  • Schröger E, Giard MH, Wolf CH (2000) Auditory distraction: event-related potential and behavioral indices. Clin Neurophysiol 111(8):1450–1460

    Article  PubMed  Google Scholar 

  • Seri S, Cerquiglini A, Pisani F, Curatolo P (1999) Autism in tuberous sclerosis: evoked potential evidence for a deficit in auditory sensory processing. Clin Neurophysiol 110:1825–1830

    Article  CAS  PubMed  Google Scholar 

  • Shalgi S, Deouell LY (2007) Direct evidence for differential roles of temporal and frontal components of auditory change detection. Neuropsychologia 45:1878–1888

    Article  PubMed  Google Scholar 

  • Tenke CE, Kayser J, Stewart JW, Bruder GE (2010) Novelty P3 reductions in depression: characterization using principal components analysis (PCA) of current source density (CSD) waveforms. Psychophysiology 47(1):133–146

    Article  PubMed Central  PubMed  Google Scholar 

  • van der Stelt O, van der Molen M, Boudewijn Gunning W, Kok A (2001) Neuroelectrical signs of selective attention to color in boys with attention-deficit hyperactivity disorder. Brain Res Cogn Brain Res 12(2):245–264

    Article  PubMed  Google Scholar 

  • Verkindt C, Bertrand O, Thevenet M, Pernier J (1994) Two auditory components in the 130–230 ms range disclosed by their stimulus frequency dependence. NeuroReport 5(10):1189–1192

    Article  CAS  PubMed  Google Scholar 

  • Vidal F, Hasbroucq T, Grapperon J, Bonnet M (2000) Is the ‘error negativity’ specific to errors? Biol Psychol 51(2–3):109–128

    Article  CAS  PubMed  Google Scholar 

  • Vidal J, Giard MH, Roux B, Barthelemy C, Bruneau N (2008) Cross-modal processing of auditory-visual stimuli in a no-task paradigm: a topographic event-related potential study. Clin Neurophysiol 119(4):763–771

    Article  CAS  PubMed  Google Scholar 

  • Wolff C, Schröger E (2001) Human pre-attentive auditory change-detection with single, double, and triple deviations as revealed by mismatch negativity additivity. Neurosci Lett 311:37–40

    Article  CAS  PubMed  Google Scholar 

  • Yago H, Escera C, Alho K, Giard MH (2001) Cerebral mechanisms underlying orienting of attention towards auditory frequency changes. NeuroReport 12(11):2583–2587

    Article  CAS  PubMed  Google Scholar 

  • Yago H, Escera C, Alho K, Giard MH (2003) Spatiotemporal dynamics of the auditory novelty-P3 event-related brain potential. Cogn Brain Res 16(3):383–390

    Article  Google Scholar 

Download references

Acknowledgments

We thank Zahra Hussain for careful reading of an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Hélène Giard.

Additional information

This is one of several papers published together in Brain Topography in the “Special Issue: Mismatch Negativity”.

SCD computation is available in the ELAN pack software, that can be downloaded at: http://elan.lyon.inserm.fr/?q=download_page/.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giard, MH., Besle, J., Aguera, PE. et al. Scalp Current Density Mapping in the Analysis of Mismatch Negativity Paradigms. Brain Topogr 27, 428–437 (2014). https://doi.org/10.1007/s10548-013-0324-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-013-0324-8

Keywords

Navigation