Skip to main content

Advertisement

Log in

AChE deficiency or inhibition decreases apoptosis and p53 expression and protects renal function after ischemia/reperfusion

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

We recently reported that the expression of the synaptic form of acetylcholinesterase (AChE) is induced during apoptosis in various cell types in vitro. Here, we provide evidence to confirm that AChE is expressed during ischemia–reperfusion (I/R)-induced apoptosis in vivo. Renal I/R is a major cause of acute renal failure (ARF), resulting in injury and the eventual death of renal cells due to a combination of apoptosis and necrosis. Using AChE-deficient mice and AChE inhibitors, we investigated whether AChE deficiency or inhibition can protect against apoptosis caused by I/R in a murine kidney model. Unilateral clamping of renal pedicles for 90 min followed by reperfusion for 24 h caused significant renal dysfunction and injury. Both genetic AChE deficiency and chemical inhibition of AChE (provided by huperzine A, tacrine and donepezil) significantly reduced the biochemical and histological evidence of renal dysfunction following I/R. Activation of caspases-8, -9, -12, and -3 in vivo were prevented and associated with reduced levels of cell apoptosis and cell death. A further investigation also confirmed that AChE deficiency down-regulated p53 induction and phosphorylation at serine-15, and decreased the Bax/Bcl-2 ratio during I/R. In conclusion, our study demonstrates that AChE may be a pro-apoptotic factor and the inhibition of AChE reduces renal I/R injury. These findings suggest that AChE inhibitors may represent a therapeutic strategy for protection against ischemic acute renal failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AChE:

Acetylcholinesterase

AChEIs:

Acetylcholinesterase inhibitors

AD:

Alzheimer’s disease

ARF:

Acute renal failure

GSK 3:

Glycogen synthase kinase 3

I/R:

Ischemia-reperfusion

JNK:

The c-Jun-N-terminal kinase

TUNEL:

Terminal deoxynucleotidyltransferase-mediated dUTP nick-end-labeling

References

  1. Taylor P, Radic Z (1994) The cholinesterases: from genes to proteins. Annu Rev Pharmacol Toxicol 34:281–320

    Article  CAS  PubMed  Google Scholar 

  2. Soreq H, Seidman S (2001) Acetylcholinesterase–new roles for an old actor. Nat Rev Neurosci 2:294–302

    Article  CAS  PubMed  Google Scholar 

  3. Zhang XJ, Yang L, Zhao Q et al (2002) Induction of acetylcholinesterase expression during apoptosis in various cell types. Cell Death Differ 9:790–800

    Article  CAS  PubMed  Google Scholar 

  4. Toiber D, Berson A, Greenberg D, Melamed-Book N, Diamant S, Soreq H (2008) N-acetylcholinesterase-induced apoptosis in Alzheimer’s disease. PLoS ONE 3:e3108

    Article  PubMed  Google Scholar 

  5. Wang R, Xiao XQ, Tang XC (2001) Huperzine A attenuates hydrogen peroxide-induced apoptosis by regulating expression of apoptosis-related genes in rat PC12 cells. Neuroreport 12:2629–2634

    Article  CAS  PubMed  Google Scholar 

  6. Wang R, Zhou J, Tang XC (2002) Tacrine attenuates hydrogen peroxide-induced apoptosis by regulating expression of apoptosis-related genes in rat PC12 cells. Brain Res Mol Brain Res 107:1–8

    Article  CAS  PubMed  Google Scholar 

  7. Gao X, Tang XC (2006) Huperzine A attenuates mitochondrial dysfunction in beta-amyloid-treated PC12 cells by reducing oxygen free radicals accumulation and improving mitochondrial energy metabolism. J Neurosci Res 83:1048–1057

    Article  CAS  PubMed  Google Scholar 

  8. Xiao XQ, Lee NT, Carlier PR, Pang Y, Han YF (2000) Bis(7)-tacrine, a promising anti-Alzheimer’s agent, reduces hydrogen peroxide-induced injury in rat pheochromocytoma cells: comparison with tacrine. Neurosci Lett 290:197–200

    Article  CAS  PubMed  Google Scholar 

  9. Orozco C, de Los Rios C, Arias E et al (2004) ITH4012 (ethyl 5-amino-6, 7, 8, 9-tetrahydro-2-methyl-4-phenylbenzol[1, 8]naphthyridine-3-car boxylate), a novel acetylcholinesterase inhibitor with “calcium promotor” and neuroprotective properties. J Pharmacol Exp Ther 310:987–994

    Article  CAS  PubMed  Google Scholar 

  10. Takada Y, Yonezawa A, Kume T et al (2003) Nicotinic acetylcholine receptor-mediated neuroprotection by donepezil against glutamate neurotoxicity in rat cortical neurons. J Pharmacol Exp Ther 306:772–777

    Article  CAS  PubMed  Google Scholar 

  11. Li W, Pi R, Chan HH et al (2005) Novel dimeric acetylcholinesterase inhibitor bis7-tacrine, but not donepezil, prevents glutamate-induced neuronal apoptosis by blocking N-methyl-d-aspartate receptors. J Biol Chem 280:18179–18188

    Article  CAS  PubMed  Google Scholar 

  12. Zhao Y, Li W, Chow PC et al (2008) Bis(7)-tacrine, a promising anti-Alzheimer’s dimer, affords dose- and time-dependent neuroprotection against transient focal cerebral ischemia. Neurosci Lett 439:160–164

    Article  CAS  PubMed  Google Scholar 

  13. Paulus JM, Maigne J, Keyhani E (1981) Mouse megakaryocytes secrete acetylcholinesterase. Blood 58:1100–1106

    CAS  PubMed  Google Scholar 

  14. Roberts WL, Kim BH, Rosenberry TL (1987) Differences in the glycolipid membrane anchors of bovine and human erythrocyte acetylcholinesterases. Proc Natl Acad Sci USA 84:7817–7821

    Article  CAS  PubMed  Google Scholar 

  15. Su W, Wu J, Ye WY, Zhang XJ (2008) A monoclonal antibody against synaptic AChE: a useful tool for detecting apoptotic cells. Chem Biol Interact 175:101–107

    Article  CAS  PubMed  Google Scholar 

  16. Jing P, Jin Q, Wu J, Zhang XJ (2008) GSK3beta mediates the induced expression of synaptic acetylcholinesterase during apoptosis. J Neurochem 104:409–419

    CAS  PubMed  Google Scholar 

  17. Padanilam BJ (2003) Cell death induced by acute renal injury: a perspective on the contributions of apoptosis and necrosis. Am J Physiol Renal Physiol 284:F608–627

    CAS  PubMed  Google Scholar 

  18. Fan TJ, Han LH, Cong RS, Liang J (2005) Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai) 37:719–727

    Article  CAS  Google Scholar 

  19. Rao RV, Ellerby HM, Bredesen DE (2004) Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11:372–380

    Article  CAS  PubMed  Google Scholar 

  20. Lamkanfi M, Kalai M, Vandenabeele P (2004) Caspase-12: an overview. Cell Death Differ 11:365–368

    Article  CAS  PubMed  Google Scholar 

  21. Momoi T (2004) Caspases involved in ER stress-mediated cell death. J Chem Neuroanat 28:101–105

    CAS  PubMed  Google Scholar 

  22. Jimbo A, Fujita E, Kouroku Y et al (2003) ER stress induces caspase-8 activation, stimulating cytochrome c release and caspase-9 activation. Exp Cell Res 283:156–166

    Article  CAS  PubMed  Google Scholar 

  23. Haupt S, Berger M, Goldberg Z, Haupt Y (2003) Apoptosis—the p53 network. J Cell Sci 116:4077–4085

    Article  CAS  PubMed  Google Scholar 

  24. Moll UM, Wolff S, Speidel D, Deppert W (2005) Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 17:631–636

    Article  CAS  PubMed  Google Scholar 

  25. Li J, Lee B, Lee AS (2006) Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J Biol Chem 281:7260–7270

    Article  CAS  PubMed  Google Scholar 

  26. Levine AJ, Hu W, Feng Z (2006) The P53 pathway: what questions remain to be explored? Cell Death Differ 13:1027–1036

    Article  CAS  PubMed  Google Scholar 

  27. Chipuk JE, Green DR (2006) Dissecting p53-dependent apoptosis. Cell Death Differ 13:994–1002

    Article  CAS  PubMed  Google Scholar 

  28. Pandey P, Saleh A, Nakazawa A et al (2000) Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J 19:4310–4322

    Article  CAS  PubMed  Google Scholar 

  29. Bossy-Wetzel E, Green DR (1999) Caspases induce cytochrome c release from mitochondria by activating cytosolic factors. J Biol Chem 274:17484–17490

    Article  CAS  PubMed  Google Scholar 

  30. Shieh SY, Ikeda M, Taya Y, Prives C (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334

    Article  CAS  PubMed  Google Scholar 

  31. Zhu H, Gao W, Jiang H et al (2007) Regulation of acetylcholinesterase expression by calcium signaling during calcium ionophore A23187- and thapsigargin-induced apoptosis. Int J Biochem Cell Biol 39:93–108

    Article  CAS  PubMed  Google Scholar 

  32. Song L, De Sarno P, Jope RS (2002) Central role of glycogen synthase kinase-3beta in endoplasmic reticulum stress-induced caspase-3 activation. J Biol Chem 277:44701–44708

    Article  CAS  PubMed  Google Scholar 

  33. Zhu H, Gao W, Jiang H, Wu J, Shi YF, Zhang XJ (2007) Calcineurin mediates acetylcholinesterase expression during calcium ionophore A23187-induced HeLa cell apoptosis. Biochim Biophys Acta 1773:593–602

    Article  CAS  PubMed  Google Scholar 

  34. Deng R, Li W, Guan Z et al (2006) Acetylcholinesterase expression mediated by c-Jun-NH2-terminal kinase pathway during anticancer drug-induced apoptosis. Oncogene 25:7070–7077

    Article  CAS  PubMed  Google Scholar 

  35. Zhang JY, Jiang H, Gao W et al (2008) The JNK/AP1/ATF2 pathway is involved in H2O2-induced acetylcholinesterase expression during apoptosis. Cell Mol Life Sci 65:1435–1445

    Article  CAS  PubMed  Google Scholar 

  36. Shen HM, Liu ZG (2006) JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med 40:928–939

    Article  CAS  PubMed  Google Scholar 

  37. Urano F, Wang X, Bertolotti A et al (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287:664–666

    Article  CAS  PubMed  Google Scholar 

  38. Silva MT, do Vale A, dos Santos NM (2008) Secondary necrosis in multicellular animals: an outcome of apoptosis with pathogenic implications. Apoptosis 13:463–482

    Article  PubMed  Google Scholar 

  39. Jin QH, He HY, Shi YF, Lu H, Zhang XJ (2004) Overexpression of acetylcholinesterase inhibited cell proliferation and promoted apoptosis in NRK cells. Acta Pharmacol Sin 25:1013–1021

    CAS  PubMed  Google Scholar 

  40. Perry C, Pick M, Podoly E et al (2007) Acetylcholinesterase/C terminal binding protein interactions modify Ikaros functions, causing T lymphopenia. Leukemia 21:1472–1480

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the Major State Basic Research Development Program of China (973 Program, No. 2007CB947901),the Third Phase Creative Program of Chinese Academy of Sciences (No. KSCX1-YW-R-13), the National Natural Science Foundation of China (Nos. 30971481 and 30623003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejun Zhang.

Additional information

Weiyuan Ye and Xiaowen Gong have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, W., Gong, X., Xie, J. et al. AChE deficiency or inhibition decreases apoptosis and p53 expression and protects renal function after ischemia/reperfusion. Apoptosis 15, 474–487 (2010). https://doi.org/10.1007/s10495-009-0438-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-009-0438-3

Keywords

Navigation