Skip to main content
Log in

Ultra low-voltage CMOS transconductance amplifiers

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Simple and symmetrical ultra low-voltage current mode analog circuits and autozeroing amplifiers are presented. The low-voltage analog circuits are based on low-voltage inverters resembling precharge digital logic. Ultra low-voltage analog circuits can be operated at supply voltages down to 250 mV with rail-to-rail input and output swing. The output current of the ultra low-voltage symmetrical transconductance amplifier can be quite large due to a current boost technique. Ultra low-voltage analog circuits can be operated at supply voltages down to 250 mV with rail- to-rail input and output swing. The current headroom is 3 μA and the supply voltage is 300 mV. For supply voltages down to 300 mV simulated data shows that the maximum clock frequency is approximately 600 MHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Galton, I. (2009). Low-voltage analog and mixed-signal CMOS circuit design. In IEEE International solid-state conference (ISSCC), p. 502.

  2. Ramirez-Amgulo, J., Gonzalez-Carvajal, R., Lopez-Martin, A., & Torralba, A. (2004). Some techniques for low-voltage continuous-time analog circuit operation. In Proceedings of the 2004 IEEE Dallas/CAS Workshop (DCAS-04), pp. 87–112.

  3. Binkley, D.M. (2008). Tradeoffs and optimization in analog CMOS design, 1st ed. New York: Wiley-Interscience.

    Book  Google Scholar 

  4. Michel, F., & Steyaert, M. S. J. (2012). 250 mV 7.5 W 61 dB SNDR SC modulator using near-threshold-voltage-biased inverter amplifiers in 130 nm CMOS. IEEE Journal of solid-state circuits, 47(3), 709–721.

    Google Scholar 

  5. Fayomi, C. J. B., Roberts, G. W., & Sawan, M. (2005). Low-voltage CMOS analog bootstrapped switch for sample-and-hold circuit: Design and chip characterization. In IEEE International symposium on circuits and systems (ISCAS), Vol. 3, pp. 2000–2003.

  6. Carvajal, R. G., Ramrez-Angulo, J., Lopez-Martin, A. J., Torralba, A., Galan, J. A. G., Carlosena, A., & Chavero, F. M. (2005). The flipped voltage follower: A useful cell for low-voltage low-power circuit design. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(7), 1276–1291.

    Google Scholar 

  7. Kuo, C.-H., Kuo, T.-H., & Wen, K.-L. (2010). Bias-and-input interchanging technique for cyclic/pipelined ADCs With opamp sharing. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(3), 168–172.

    Google Scholar 

  8. Berg, Y., Wisland, D.T. & Lande, T.S. (1999). Ultra low-voltage/low-power digital floating-gate circuits. IEEE Transactions on Circuits and Systems II, 46(7), 930–936.

    Article  Google Scholar 

  9. Kotani, K., Shibata, T., Imai, M., & Ohmi, T. (1995). Clocked-Neuron-MOS logic circuits employing auto-threshold-adjustment. In IEEE International solid-state circuits conference (ISSCC), pp. 320–321, 388.

  10. Lashevsky, R., Takaara, K., & Souma, M. (1998). Neuron MOSFET as a way to design a threshold gates with the threshold and input weights alterable in real time. In IEEE TT13.11-1.4, pp. 263–266.

  11. Shibata, T., & Ohmi, T. (1992). A functional MOS transistor featuring gate-level weighted sum and threshold operations. IEEE Transactions on Electron Devices, 39, 1444–1455.

    Google Scholar 

  12. Miguel, J. M. A., Lopez-Martin, A. J., Acosta, L., Ramrez-Angulo, J., & Carvajal, R. G. (2011) Using floating gate and quasi-floating gate techniques for rail-to-rail tunable CMOS transconductor design. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(7), 1604–1614.

    Google Scholar 

  13. Berg, Y., Tor S. Lande, & Næss, Ø. (2001). Programming floating-gate circuits with UV-activated conductances. IEEE Transactions on Circuits and Systems -II: Analog and Digital Signal Processing, 48(1), 12–19.

    Google Scholar 

  14. Berg, Y., Aunet, S., Mirmotahari, O., & Høvin, M. (2003). Novel recharge semi-floating-gate CMOS logic for multiple-valued systems. In IEEE International symposium on circuits and systems (ISCAS), Bangkok.

  15. Berg, Y., & Mirmotahari, O. (2011). Ultra low-voltage CMOS current mirrors. Analog Integrated Circuits and Signal Processing, 68(2), 219–232.

    Google Scholar 

  16. Berg, Y. (2011). Novel clocked semi-floating-gate differential transconductance amplifer for ultra-low voltage analog design. In IEEE 9th International NEWCAS conference, Bordeaux, pp. 285–288.

  17. Berg, Y. (2010). Novel ultra low voltage transconductance amplifier. In IEEE International symposium on circuits and systems (ISCAS), Paris, France, pp. 1244–1247.

  18. Berg, Y. (2010). Novel ultra low voltage semi floating-gate passband transconductance amplifier. In 15th IEEE Mediterranean electrotechnical conference (MELECON), Malta, pp. 286–289.

  19. Enz, C. C., & Temes, G. C. (1996). Circuit techniques for reducing the effects of Op-Amp imperfections: Autozeroing, correlated double sampling, and chopper stabilization. Proceedings of the IEEE, 84(11), 1584–1614.

    Google Scholar 

  20. More, S., Fulde, M., Chouard, F., & Schmitt-Landsiedel, D. (2011). Reducing impact of degradation on analog circuits by chopper stabilization and autozeroing. 12th International symposium on quality electronics design, pp. 1–6.

  21. Machowski, W., & Jasielski, J. (2011). Low voltage, low power analog multipliers based on CMOS inverters, MIXDES 2011. In 18th International conference mixed design of integrated circuits and systems, Gliwice, Poland, pp. 352–357.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yngvar Berg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berg, Y. Ultra low-voltage CMOS transconductance amplifiers. Analog Integr Circ Sig Process 73, 683–692 (2012). https://doi.org/10.1007/s10470-012-9924-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-012-9924-6

Keywords

Navigation