Skip to main content
Log in

Low-voltage lab-on-chip for micro and nanoparticles manipulation and detection: experimental results

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a low voltage fully integrated Laboratory-on-Chip (LoC) for dielectrophoretic manipulation and capacitive sensing of nano and micro particles is presented. The proposed system is intended to design an implantable LoC. The lowest static power consumption of the implemented Integrated circuit is 650 μA with a voltage supply of −1.10 and +1.8 V. Three different sizes of carboxyl-modified polystyrene particles (diameters of 0.22, 0.97 and 2.04 μm) where tested experimentally with three different electrode architectures to achieve dielectrophoretic mixing and separation. U-shaped, L-shaped and octagonal electrodes are used to perform the separation and mixing operations. The biosensing part is designed with a charge based capacitive sensor with an integrated sigma-delta modulator at its output stage. It was tested experimentally with algae and ethanol. The chip size is 1.2 by 1.2 mm and it is connected to a 15 × 30 cm microfluidic design. An efficient particle manipulation was achieved by applying a voltage of 1.7 V peak to peak in the microchannel with 90 and 180° dephased signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Ackland , P. H., (1978). Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields. Cambridge: Cambridge University Press.

  2. Abdel, M. K., & Mahmoud, S. (2007). 3v cmos rail to rail op-amp. In Internatonal conference on microelectronics, 2007 (pp. 373–376). Cairo: ICM.

  3. Baker, R. J. (2008). CMOS: circuit design, layout, and simulation. New York: Wiley-IEEE Press.

    Book  Google Scholar 

  4. Carrillo, J., Duque-Carrillo, J., Torelli, G., & Ausin, J. (2003). Constant-gm constant-slew-rate high-bandwidth low-voltage rail-to-rail cmos input stage for vlsi cell libraries. IEEE Journal of Solid-State Circuits, 38(8), 1364–1372.

    Article  Google Scholar 

  5. Cong, P., Ko, W., & Young, D. (2008). Low noise uwatt interface circuits for wireless implantable real-time digital blood pressure monitoring. In Custom integrated circuits conference, 2008 (pp. 523–526). CICC 2008. New York: IEEE.

  6. Dürr, M., Kentsch, J., Müller, T., Schnelle, T., & Stelzle, M. (2003). Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis. Electrophoresis, 24(4), 722–731.

    Article  Google Scholar 

  7. Ferri G., & Sansen W. (1997). A rail-to-rail constant-gm low-voltage cmos operational transconductance amplifier. EEE Journal of Solid-State Circuits, 32(10), 1563–1567.

    Article  Google Scholar 

  8. Heer, F., Franks, W., Blau, A., Taschini, S., Ziegler, C., Hierlemann, A., & Baltes, H. (2004). Cmos microelectrode array for the monitoring of electrogenic cells. Biosensors and Bioelectronics, 20(2), 358–366.

    Article  Google Scholar 

  9. Hoffman, R. A., & Britt, W. B. (1979). Flow-system measurement of cell impedance properties. Journal of Histochemistry and Cytochemistry, 27(1), 234–240.

    Article  Google Scholar 

  10. Hu, Y., & Sawan, M. (2002). Cmos front-end amplifier dedicated to monitor very low amplitude signal from implantable sensors. Analog Integrated Circuits and Signal Processing, 33, 29–41.

    Article  Google Scholar 

  11. Jang, L. S., & Wang, M. H. (2007). Microfluidic device for cell capture and impedance measurement. Biomedical Microdevices, 9, 737–743.

    Article  Google Scholar 

  12. Khare, K., Khare, N., & Sethiya, P. (2008). Analysis of low voltage rail-to-rail cmos operational amplifier design. In International conference on electronic design, 2008 (pp. 1–4). Penang: ICED.

  13. Kua, C. H., Lam, Y. C., Yang, C., Youcef-Toumi, K., & Rodriguez, I. (2008). Modeling of dielectrophoretic force for moving dielectrophoresis electrodes. J. Electrostatics, 66(9–10), 514–525.

    Article  Google Scholar 

  14. Medoro, G., Nastruzzi, C., Guerrieri, R., Gambari, R., & Manaresi, N. (2007). Lab on a chip for live-cell manipulation. IEEE Design and Test of Computers, 24(1), 26–36.

    Article  Google Scholar 

  15. Miled, M., El-Achkar, C., & Sawan, M. (2010). Low-voltage dielectrophoretic platform for lab-on-chip biosensing applications. In 8th IEEE international NEWCAS conference (pp. 389–392). Bordeaux: NEWCAS.

  16. Miled, M., Gagne, A., & Sawan, M. (2011). Electrodes architectures for dielectrophoretic-based cells manipulation in locs: Modeling, simulation and experimental results. In IEEE 17th international mixed-signals, sensors and systems test workshop (pp. 39–42). Montpellier: IMS3TW.

  17. Miled, M. A., & Sawan, M. (2011). A new fully integrated cmos interface for a dielectrophoretic lab-on-a-chip device. In IEEE International Symposium on Circuits and Systems (pp. 2349–2352). Newport Beach: ISCAS.

  18. Miled, M. A., & Sawan, M. (2012). Dielectrophoresis-based integrated lab-on-chip for nano and micro-particles manipulation and capacitive detection. In IEEE transactions on biomedical circuits and sytems. Minneapolis: IEEE.

  19. Nosratinia, A., Ahmadi, M., Jullien, G., & Shridhar, M. (1995). High-swing, high-drive cmos buffer. Circuits, Devices and Systems, IEE Proceedings, 142(2), 109–112.

    Google Scholar 

  20. Pethig, R. (1979). Dielectric and Electronic Properties of Biological Materials. New York: Wiley.

    Google Scholar 

  21. Roh, H., Lee, H., Choi, Y., & Roh, J. (2010). A 0.8-v 816-nw delta–sigma modulator for low-power biomedical applications. Analog Integrated Circuits and Signal Processing, 63, 101–106.

    Article  Google Scholar 

  22. Rue, B., Levacq, D., & Flandre, D. (2006). Low-voltage low-power high-temperature soi cmos rectifiers. In IEEE international SOI conference, 2006 (pp. 65–66). Minneapolis: IEEE.

  23. Tsang, T., El-Gamal, M., Iniewski, K., Townsend, K., Haslett, J., & Wang, Y. (2007). Current status of cmos low voltage and low power wireless ic designs. Analog Integrated Circuits and Signal Processing, 53, 9–18.

    Article  Google Scholar 

  24. Wake, H. & Brooke, M. (2007). Low voltage electrophoresis on a cmos chip. In IEEE Midwest Symposium on Circuits and systems (pp. 1042–1045). Knoxville: MWSCAS.

  25. Zhang, C., Khoshmanesh, K., Mitchell, A., & Kalantar-zadeh, K. (2010). Dielectrophoresis for manipulation of micro/nano particles in microfluidic systems. Analytical and Bioanalytical Chemistry, 396, 401–420.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from NSERC and Canada Research Chair in Smart Medical Devices, and are grateful for the design and simulation tools supplied by CMC Microsystems. The authors also thank Laurent Mouden and Abbas Nemr for their help in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Amine Miled.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miled, M.A., Massicotte, G. & Sawan, M. Low-voltage lab-on-chip for micro and nanoparticles manipulation and detection: experimental results. Analog Integr Circ Sig Process 73, 707–717 (2012). https://doi.org/10.1007/s10470-012-9891-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-012-9891-y

Keywords

Navigation