Skip to main content

Advertisement

Log in

Tumour vasculature targeting agents in hybrid/conjugate drugs

  • Review Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Tumour vasculature targeting has been a very active area of cancer drug discovery over the last decade. Growth of solid tumours beyond a certain point requires a sufficient blood supply in order for them to develop and metastasise. While novel anti-angiogenic and vascular disrupting agents represent an important contribution to the armoury of anti-cancer agents they nevertheless usually require combination with standard cytotoxic therapy in order to demonstrate positive clinical outcomes. In line with this consensus, a new concept has arisen, namely the design of functional hybrids where at least one component of the design targets a tumour angiogenic/vasculature pathway. This review will outline examples of such hybrid/conjugate-based approaches. Emphasis will be placed on their preclinical evaluation with particular focus on the RGD/NGR-conjugates, heparin-related hybrids and antibody-drug conjugates. In conclusion, the benefits and shortcomings of hybrids under development will be discussed in the context of future directions and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364

    Article  PubMed  CAS  Google Scholar 

  2. Bouck N, Stellmach V, Hsu SC (1996) How tumors become angiogenic. Adv Cancer Res 69:135–174

    Article  PubMed  CAS  Google Scholar 

  3. Gimbrone MA Jr, Leapman SB, Cotran RS, Folkman J (1972) Tumor dormancy in vivo by prevention of neovascularization. J Exp Med 136(2):261–276

    Article  PubMed  Google Scholar 

  4. Ferrara N (2009) Vascular endothelial growth factor. Arterioscler Thromb Vasc Biol 29(6):789–791

    Article  PubMed  CAS  Google Scholar 

  5. Mac Gabhann F, Popel AS (2008) Systems biology of vascular endothelial growth factors. Microcirculation 15(8):715–738

    Article  PubMed  CAS  Google Scholar 

  6. Carmeliet P (2005) VEGF as a key mediator of angiogenesis in cancer. Oncology 69(Suppl 3):4–10

    Article  PubMed  CAS  Google Scholar 

  7. Littlepage LE, Sternlicht MD, Rougier N, Phillips J, Gallo E, Yu Y, Williams K, Brenot A, Gordon JI, Werb Z (2010) Matrix metalloproteinases contribute distinct roles in neuroendocrine prostate carcinogenesis, metastasis, and angiogenesis progression. Cancer Res 70(6):2224–2234

    Article  PubMed  CAS  Google Scholar 

  8. Pandya NM, Dhalla NS, Santani DD (2006) Angiogenesis—a new target for future therapy. Vascul Pharmacol 44(5):265–274

    Article  PubMed  CAS  Google Scholar 

  9. Kazerounian S, Yee KO, Lawler J (2008) Thrombospondins in cancer. Cell Mol Life Sci 65(5):700–712

    Article  PubMed  CAS  Google Scholar 

  10. Vassalli JD, Sappino AP, Belin D (1991) The plasminogen activator/plasmin system. J Clin Invest 88(4):1067–1072

    Article  PubMed  CAS  Google Scholar 

  11. Wahl ML, Owen CS, Grant DS (2002) Angiostatin induces intracellular acidosis and anoikis in endothelial cells at a tumor-like low pH. Endothelium 9(3):205–216

    Article  PubMed  CAS  Google Scholar 

  12. O’Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79(2):315–328

    Article  PubMed  Google Scholar 

  13. O’Reilly MS (1997) Angiostatin: an endogenous inhibitor of angiogenesis and of tumor growth. EXS 79:273–294

    PubMed  Google Scholar 

  14. Kurup A, Lin C, Murry DJ, Dobrolecki L, Estes D, Yiannoutsos CT, Mariano L, Sidor C, Hickey R, Hanna N (2006) Recombinant human angiostatin (rhAngiostatin) in combination with paclitaxel and carboplatin in patients with advanced non-small-cell lung cancer: a phase II study from Indiana University. Ann Oncol 17(1):97–103

    Article  PubMed  CAS  Google Scholar 

  15. Gonzalez-Gronow M, Grenett HE, Fuller GM, Pizzo SV (1990) The role of carbohydrate in the function of human plasminogen: comparison of the protein obtained from molecular cloning and expression in Escherichia coli and COS cells. Biochim Biophys Acta 1039(3):269–276

    Article  PubMed  CAS  Google Scholar 

  16. DeMoraes ED, Fogler WE, Grant DS, Wahl ML, Leeper DB, Zrada S, Malin A, Connors S, Fortier AH, Dabrow M, Sidor C, Capizzi RL (2001) Recombinant Human Angiostatin (rhA): a Phase I Clinical Trial Assessing Safety, Pharmacokinetics (PK) and Pharmacodynamics (PD), in 2001 ASCO Annual Meeting, San Francisco, pp 12–15

  17. Ling Y, Yang Y, Lu N, You QD, Wang S, Gao Y, Chen Y, Guo QL (2007) Endostar, a novel recombinant human endostatin, exerts antiangiogenic effect via blocking VEGF-induced tyrosine phosphorylation of KDR/Flk-1 of endothelial cells. Biochem Biophys Res Commun 361(1):79–84

    Article  PubMed  CAS  Google Scholar 

  18. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88(2):277–285

    Article  PubMed  Google Scholar 

  19. Folkman J (2006) Antiangiogenesis in cancer therapy—endostatin and its mechanisms of action. Exp Cell Res 312(5):594–607

    Article  PubMed  CAS  Google Scholar 

  20. Galligioni E, Ferro A (2001) Angiogenesis and antiangiogenic agents in non-small cell lung cancer. Lung Cancer 34(Suppl 4):S3–S7

    Article  PubMed  Google Scholar 

  21. Nyberg P, Xie L, Kalluri R (2005) Endogenous inhibitors of angiogenesis. Cancer Res 65(10):3967–3979

    Article  PubMed  CAS  Google Scholar 

  22. Cao Y (2005) Tumor angiogenesis and therapy. Biomed Pharmacother 59(Suppl 2):S340–S343

    Article  PubMed  CAS  Google Scholar 

  23. Abdollahi A, Hlatky L, Huber PE (2005) Endostatin: the logic of antiangiogenic therapy. Drug Resist Updat 8(1–2):59–74

    Article  PubMed  CAS  Google Scholar 

  24. Wang J, Sun Y, Liu Y, Yu Q, Zhang Y, Li K, Zhu Y, Zhou Q, Hou M, Guan Z, Li W, Zhuang W, Wang D, Liang H, Qin F, Lu H, Liu X, Sun H, Luo S, Yang R, Tu Y, Wang X, Song S, Zhou J, You L, Yao C (2005) Results of randomized, multicenter, double-blind phase III trial of rh-endostatin (YH-16) in treatment of advanced non-small cell lung cancer patients. Zhongguo Fei Ai Za Zhi 8(4):283–290

    PubMed  Google Scholar 

  25. Cheng D, Liang B, Li Y (2012) Clinical value of vascular endothelial growth factor and endostatin in urine for diagnosis of bladder cancer. Tumori 98(6):762–767

    PubMed  Google Scholar 

  26. Mo HY, Luo DH, Qiu HZ, Liu H, Chen QY, Tang LQ, Zhong ZL, Huang PY, Zhao ZJ, Zhang CQ, Zhang Y, Mai HQ (2013) Elevated serum endostatin levels are associated with poor survival in patients with advanced-stage nasopharyngeal carcinoma. Clin Oncol (R Coll Radiol):1–10

  27. Maeshima Y, Manfredi M, Reimer C, Holthaus KA, Hopfer H, Chandamuri BR, Kharbanda S, Kalluri R (2001) Identification of the anti-angiogenic site within vascular basement membrane-derived tumstatin. J Biol Chem 276(18):15240–15248

    Article  PubMed  CAS  Google Scholar 

  28. Sudhakar A, Sugimoto H, Yang C, Lively J, Zeisberg M, Kalluri R (2003) Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc Natl Acad Sci USA 100(8):4766–4771

    Article  PubMed  CAS  Google Scholar 

  29. Sudhakar A, Boosani CS (2008) Inhibition of tumor angiogenesis by tumstatin: insights into signaling mechanisms and implications in cancer regression. Pharm Res 25(12):2731–2739

    Article  PubMed  CAS  Google Scholar 

  30. Maeshima Y, Colorado PC, Torre A, Holthaus KA, Grunkemeyer JA, Ericksen MB, Hopfer H, Xiao Y, Stillman IE, Kalluri R (2000) Distinct antitumor properties of a type IV collagen domain derived from basement membrane. J Biol Chem 275(28):21340–21348

    Article  PubMed  CAS  Google Scholar 

  31. Wang C, Li Q, Yao H, Liu M, Xiao Y, Jin D (2012) Anti-tumor peptide of tumstatin in the treatment of the transplantable model of human laryngeal squamous carcinoma in nude mice. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 26(6):277–279

    PubMed  CAS  Google Scholar 

  32. Luo YQ, Ming Z, Zhao L, Yao LJ, Dong H, Du JP, Wu SZ, Hu W (2012) Decreased tumstatin-mRNA is associated with poor outcome in patients with NSCLC. IUBMB Life 64(5):423–431

    Article  PubMed  CAS  Google Scholar 

  33. Zhang GM, Sui LH, Jia T, Zhao YZ, Fu SB, Liu XH, Yu Y (2008) Inhibitory effect of recombinant anti-angiogenic peptide of tumstatin on growth and metastasis of human ovarian cancer transplanted in nude mice. Zhonghua Zhong Liu Za Zhi 30(3):170–173

    PubMed  Google Scholar 

  34. Zhang GM, Zhang YM, Fu SB, Liu XH, Fu X, Yu Y, Zhang ZY (2008) Effects of cloned tumstatin-related and angiogenesis-inhibitory peptides on proliferation and apoptosis of endothelial cells. Chin Med J (Engl) 121(22):2324–2330

    CAS  Google Scholar 

  35. Thevenard J, Ramont L, Devy J, Brassart B, Dupont-Deshorgue A, Floquet N, Schneider L, Ouchani F, Terryn C, Maquart FX, Monboisse JC, Brassart-Pasco S (2010) The YSNSG cyclopeptide derived from tumstatin inhibits tumor angiogenesis by down-regulating endothelial cell migration. Int J Cancer 126(5):1055–1066

    PubMed  CAS  Google Scholar 

  36. Kamphaus GD, Colorado PC, Panka DJ, Hopfer H, Ramchandran R, Torre A, Maeshima Y, Mier JW, Sukhatme VP, Kalluri R (2000) Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem 275(2):1209–1215

    Article  PubMed  CAS  Google Scholar 

  37. Chung IS, Son YI, Ko YJ, Baek CH, Cho JK, Jeong HS (2008) Peritumor injections of purified tumstatin delay tumor growth and lymphatic metastasis in an orthotopic oral squamous cell carcinoma model. Oral Oncol 44(12):1118–1126

    Article  PubMed  CAS  Google Scholar 

  38. He GA, Luo JX, Zhang TY, Hu ZS, Wang FY (2004) The C-terminal domain of canstatin suppresses in vivo tumor growth associated with proliferation of endothelial cells. Biochem Biophys Res Commun 318(2):354–360

    Article  PubMed  CAS  Google Scholar 

  39. Wang WB, Zhou YL, Heng DF, Miao CH, Cao YL (2008) Combination of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and canstatin gene suppression therapy on breast tumor xenograft growth in mice. Breast Cancer Res Treat 110(2):283–295

    Article  PubMed  CAS  Google Scholar 

  40. Panka DJ, Mier JW (2003) Canstatin inhibits Akt activation and induces Fas-dependent apoptosis in endothelial cells. J Biol Chem 278(39):37632–37636

    Article  PubMed  CAS  Google Scholar 

  41. Hwang-Bo J, Yoo KH, Park JH, Jeong HS, Chung IS (2012) Recombinant canstatin inhibits angiopoietin-1-induced angiogenesis and lymphangiogenesis. Int J Cancer 131(2):298–309

    Article  PubMed  CAS  Google Scholar 

  42. Xing YN, Liang HW, Zhao L, Xu HM (2011) The antitumor activity of exogenous and endogenous canstatin on colorectal cancer cells. Asian Pac J Cancer Prev 12(10):2713–2716

    PubMed  Google Scholar 

  43. North S, Moenner M, Bikfalvi A (2005) Recent developments in the regulation of the angiogenic switch by cellular stress factors in tumors. Cancer Lett 218(1):1–14

    Article  PubMed  CAS  Google Scholar 

  44. Arbiser JL, Moses MA, Fernandez CA, Ghiso N, Cao Y, Klauber N, Frank D, Brownlee M, Flynn E, Parangi S, Byers HR, Folkman J (1997) Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc Natl Acad Sci USA 94(3):861–866

    Article  PubMed  CAS  Google Scholar 

  45. Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, Dillehay LE, Madan A, Semenza GL, Bedi A (2000) Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 14(1):34–44

    PubMed  CAS  Google Scholar 

  46. Pasquale EB (2010) Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 10(3):165–180

    Article  PubMed  CAS  Google Scholar 

  47. Ahmed Z, Bicknell R (2009) Angiogenic signalling pathways. Methods Mol Biol 467:3–24

    Article  PubMed  CAS  Google Scholar 

  48. Dejana E, Orsenigo F, Molendini C, Baluk P, McDonald DM (2009) Organization and signaling of endothelial cell-to-cell junctions in various regions of the blood and lymphatic vascular trees. Cell Tissue Res 335(1):17–25

    Article  PubMed  Google Scholar 

  49. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249–257

    Article  PubMed  CAS  Google Scholar 

  50. Dvorak HF, Nagy JA, Dvorak JT, Dvorak AM (1988) Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 133(1):95–109

    PubMed  CAS  Google Scholar 

  51. Eberhard A, Kahlert S, Goede V, Hemmerlein B, Plate KH, Augustin HG (2000) Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangiogenic tumor therapies. Cancer Res 60(5):1388–1393

    PubMed  CAS  Google Scholar 

  52. Kobayashi H, Tsuruchi N, Sugihara K, Kaku T, Saito T, Kamura T, Tsukamoto N, Nakano H, Taniguchi S (1993) Expression of alpha-smooth muscle actin in benign or malignant ovarian tumors. Gynecol Oncol 48(3):308–313

    Article  PubMed  CAS  Google Scholar 

  53. Hashizume H, Baluk P, Morikawa S, McLean JW, Thurston G, Roberge S, Jain RK, McDonald DM (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156(4):1363–1380

    Article  PubMed  CAS  Google Scholar 

  54. Paku S, Paweletz N (1991) First steps of tumor-related angiogenesis. Lab Invest 65(3):334–346

    PubMed  CAS  Google Scholar 

  55. Baluk P, Morikawa S, Haskell A, Mancuso M, McDonald DM (2003) Abnormalities of basement membrane on blood vessels and endothelial sprouts in tumors. Am J Pathol 163(5):1801–1815

    Article  PubMed  Google Scholar 

  56. Less JR, Skalak TC, Sevick EM, Jain RK (1991) Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res 51(1):265–273

    PubMed  CAS  Google Scholar 

  57. Gillies RJ, Schornack PA, Secomb TW, Raghunand N (1999) Causes and effects of heterogeneous perfusion in tumors. Neoplasia 1(3):197–207

    Article  PubMed  CAS  Google Scholar 

  58. Konerding MA, Malkusch W, Klapthor B, van Ackern C, Fait E, Hill SA, Parkins C, Chaplin DJ, Presta M, Denekamp J (1999) Evidence for characteristic vascular patterns in solid tumours: quantitative studies using corrosion casts. Br J Cancer 80(5–6):724–732

    Article  PubMed  CAS  Google Scholar 

  59. Pasqualini R, Arap W, McDonald DM (2002) Probing the structural and molecular diversity of tumor vasculature. Trends Mol Med 8(12):563–571

    Article  PubMed  CAS  Google Scholar 

  60. Kelland LR (2005) Targeting established tumor vasculature: a novel approach to cancer treatment. Curr Cancer Ther Rev 1:1–9

    Article  Google Scholar 

  61. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342

    Article  PubMed  CAS  Google Scholar 

  62. Baselga J (2001) Clinical trials of Herceptin(trastuzumab). Eur J Cancer 37(Suppl 1):S18–S24

    Article  PubMed  CAS  Google Scholar 

  63. Socinski MA, Novello S, Brahmer JR, Rosell R, Sanchez JM, Belani CP, Govindan R, Atkins JN, Gillenwater HH, Pallares C, Tye L, Selaru P, Chao RC, Scagliotti GV (2008) Multicenter, phase II trial of sunitinib in previously treated, advanced non-small-cell lung cancer. J Clin Oncol 26(4):650–656

    Article  PubMed  CAS  Google Scholar 

  64. Keating GM, Santoro A (2009) Sorafenib: a review of its use in advanced hepatocellular carcinoma. Drugs 69(2):223–240

    Article  PubMed  CAS  Google Scholar 

  65. Pick AM, Nystrom KK (2012) Pazopanib for the treatment of metastatic renal cell carcinoma. Clin Ther 34(3):511–520

    Article  PubMed  CAS  Google Scholar 

  66. Gotink KJ, Verheul HM (2010) Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis 13(1):1–14

    Article  PubMed  CAS  Google Scholar 

  67. Nihei Y, Suzuki M, Okano A, Tsuji T, Akiyama Y, Tsuruo T, Saito S, Hori K, Sato Y (1999) Evaluation of antivascular and antimitotic effects of tubulin binding agents in solid tumor therapy. Jpn J Cancer Res 90(12):1387–1395

    Article  PubMed  CAS  Google Scholar 

  68. (1950) Colchicine in the chemotherapy of cancer. Br Med J 2(4681):718–719

  69. Hill SA, Lonergan SJ, Denekamp J, Chaplin DJ (1993) Vinca alkaloids: anti-vascular effects in a murine tumour. Eur J Cancer 29A(9):1320–1324

    Article  PubMed  CAS  Google Scholar 

  70. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc 93(9):2325–2327

    Article  PubMed  CAS  Google Scholar 

  71. Dutcher JP, Novik Y, O’Boyle K, Marcoullis G, Secco C, Wiernik PH (2000) 20th-century advances in drug therapy in oncology—Part. II. J Clin Pharmacol 40(10):1079–1092

    PubMed  CAS  Google Scholar 

  72. Baguley BC, Holdaway KM, Thomsen LL, Zhuang L, Zwi LJ (1991) Inhibition of growth of colon 38 adenocarcinoma by vinblastine and colchicine: evidence for a vascular mechanism. Eur J Cancer 27(4):482–487

    Article  PubMed  CAS  Google Scholar 

  73. Dark GG, Hill SA, Prise VE, Tozer GM, Pettit GR, Chaplin DJ (1997) Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res 57(10):1829–1834

    PubMed  CAS  Google Scholar 

  74. Pettit GR, Cragg GM, Singh SB (1987) Antineoplastic agents, 122. Constituents of Combretum caffrum. J Nat Prod 50(3):386–391

    Article  PubMed  CAS  Google Scholar 

  75. Pettit GR, Temple C Jr, Narayanan VL, Varma R, Simpson MJ, Boyd MR, Rener GA, Bansal N (1995) Antineoplastic agents 322. synthesis of combretastatin A-4 prodrugs. Anticancer Drug Des 10(4):299–309

    PubMed  CAS  Google Scholar 

  76. McGown AT, Fox BW (1989) Structural and biochemical comparison of the anti-mitotic agents colchicine, combretastatin A4 and amphethinile. Anticancer Drug Des 3(4):249–254

    PubMed  Google Scholar 

  77. Tozer GM, Prise VE, Wilson J, Locke RJ, Vojnovic B, Stratford MR, Dennis MF, Chaplin DJ (1999) Combretastatin A-4 phosphate as a tumor vascular-targeting agent: early effects in tumors and normal tissues. Cancer Res 59(7):1626–1634

    PubMed  CAS  Google Scholar 

  78. Murata R, Overgaard J, Horsman MR (2001) Comparative effects of combretastatin A-4 disodium phosphate and 5,6-dimethylxanthenone-4-acetic acid on blood perfusion in a murine tumour and normal tissues. Int J Radiat Biol 77(2):195–204

    Article  PubMed  CAS  Google Scholar 

  79. Tozer GM, Prise VE, Wilson J, Cemazar M, Shan S, Dewhirst MW, Barber PR, Vojnovic B, Chaplin DJ (2001) Mechanisms associated with tumor vascular shut-down induced by combretastatin A-4 phosphate: intravital microscopy and measurement of vascular permeability. Cancer Res 61(17):6413–6422

    PubMed  CAS  Google Scholar 

  80. Kanthou C, Tozer GM (2002) The tumor vascular targeting agent combretastatin A-4-phosphate induces reorganization of the actin cytoskeleton and early membrane blebbing in human endothelial cells. Blood 99(6):2060–2069

    Article  PubMed  CAS  Google Scholar 

  81. Stevenson JP, Rosen M, Sun W, Gallagher M, Haller DG, Vaughn D, Giantonio B, Zimmer R, Petros WP, Stratford M, Chaplin D, Young SL, Schnall M, O’Dwyer PJ (2003) Phase I trial of the antivascular agent combretastatin A4 phosphate on a 5-day schedule to patients with cancer: magnetic resonance imaging evidence for altered tumor blood flow. J Clin Oncol 21(23):4428–4438

    Article  PubMed  CAS  Google Scholar 

  82. Dowlati A, Robertson K, Cooney M, Petros WP, Stratford M, Jesberger J, Rafie N, Overmoyer B, Makkar V, Stambler B, Taylor A, Waas J, Lewin JS, McCrae KR, Remick SC (2002) A phase I pharmacokinetic and translational study of the novel vascular targeting agent combretastatin a-4 phosphate on a single-dose intravenous schedule in patients with advanced cancer. Cancer Res 62(12):3408–3416

    PubMed  CAS  Google Scholar 

  83. Rustin GJ, Galbraith SM, Anderson H, Stratford M, Folkes LK, Sena L, Gumbrell L, Price PM (2003) Phase I clinical trial of weekly combretastatin A4 phosphate: clinical and pharmacokinetic results. J Clin Oncol 21(15):2815–2822

    Article  PubMed  CAS  Google Scholar 

  84. Mooney CJ, Nagaiah G, Fu P, Wasman JK, Cooney MM, Savvides PS, Bokar JA, Dowlati A, Wang D, Agarwala SS, Flick SM, Hartman PH, Ortiz JD, Lavertu PN, Remick SC (2009) A phase II trial of fosbretabulin in advanced anaplastic thyroid carcinoma and correlation of baseline serum-soluble intracellular adhesion molecule-1 with outcome. Thyroid 19(3):233–240

    Article  PubMed  CAS  Google Scholar 

  85. Bottaro DP, Liotta LA (2003) Cancer: out of air is not out of action. Nature 423(6940):593–595

    Article  PubMed  CAS  Google Scholar 

  86. Tsuzuki Y, Fukumura D, Oosthuyse B, Koike C, Carmeliet P, Jain RK (2000) Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1alpha--> hypoxia response element--> VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res 60(22):6248–6252

    PubMed  CAS  Google Scholar 

  87. Yuan F, Chen Y, Dellian M, Safabakhsh N, Ferrara N, Jain RK (1996) Time-dependent vascular regression and permeability changes in established human tumor xenografts induced by an anti-vascular endothelial growth factor/vascular permeability factor antibody. Proc Natl Acad Sci USA 93(25):14765–14770

    Article  PubMed  CAS  Google Scholar 

  88. Kadambi A, Mouta Carreira C, Yun CO, Padera TP, Dolmans DE, Carmeliet P, Fukumura D, Jain RK (2001) Vascular endothelial growth factor (VEGF)-C differentially affects tumor vascular function and leukocyte recruitment: role of VEGF-receptor 2 and host VEGF-A. Cancer Res 61(6):2404–2408

    PubMed  CAS  Google Scholar 

  89. Lee CG, Heijn M, di Tomaso E, Griffon-Etienne G, Ancukiewicz M, Koike C, Park KR, Ferrara N, Jain RK, Suit HD, Boucher Y (2000) Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 60(19):5565–5570

    PubMed  CAS  Google Scholar 

  90. Hansen-Algenstaedt N, Stoll BR, Padera TP, Dolmans DE, Hicklin DJ, Fukumura D, Jain RK (2000) Tumor oxygenation in hormone-dependent tumors during vascular endothelial growth factor receptor-2 blockade, hormone ablation, and chemotherapy. Cancer Res 60(16):4556–4560

    PubMed  CAS  Google Scholar 

  91. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347):298–307

    Article  PubMed  CAS  Google Scholar 

  92. Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17(11):1359–1370

    Article  PubMed  CAS  Google Scholar 

  93. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62

    Article  PubMed  CAS  Google Scholar 

  94. Tozer GM, Kanthou C, Parkins CS, Hill SA (2002) The biology of the combretastatins as tumour vascular targeting agents. Int J Exp Pathol 83(1):21–38

    Article  PubMed  CAS  Google Scholar 

  95. Chaplin DJ, Pettit GR, Hill SA (1999) Anti-vascular approaches to solid tumour therapy: evaluation of combretastatin A4 phosphate. Anticancer Res 19(1A):189–195

    PubMed  CAS  Google Scholar 

  96. Li L, Rojiani A, Siemann DW (1998) Targeting the tumor vasculature with combretastatin A-4 disodium phosphate: effects on radiation therapy. Int J Radiat Oncol Biol Phys 42(4):899–903

    Article  PubMed  CAS  Google Scholar 

  97. Horsman MR, Murata R, Breidahl T, Nielsen FU, Maxwell RJ, Stodkiled-Jorgensen H, Overgaard J (2000) Combretastatins novel vascular targeting drugs for improving anti-cancer therapy. Combretastatins and conventional therapy. Adv Exp Med Biol 476:311–323

    Article  PubMed  CAS  Google Scholar 

  98. Murata R, Siemann DW, Overgaard J, Horsman MR (2001) Improved tumor response by combining radiation and the vascular-damaging drug 5,6-dimethylxanthenone-4-acetic acid. Radiat Res 156(5 Pt 1):503–509

    Article  PubMed  CAS  Google Scholar 

  99. Dohn LH, Jensen BV, Larsen FO (2010) Short time infusion of bevacizumab in combination with 5FU-based chemotherapy as first-line therapy in a non-selective patient group with metastatic colorectal cancer. Acta Oncol 49(3):395–396

    Article  PubMed  CAS  Google Scholar 

  100. Nathan P, Zweifel M, Padhani AR, Koh DM, Ng M, Collins DJ, Harris A, Carden C, Smythe J, Fisher N, Taylor NJ, Stirling JJ, Lu SP, Leach MO, Rustin GJ, Judson I (2012) Phase I trial of combretastatin A4 phosphate (CA4P) in combination with bevacizumab in patients with advanced cancer. Clin Cancer Res 18(12):3428–3439

    Article  PubMed  CAS  Google Scholar 

  101. Walsh JJ, Bell A (2009) Hybrid drugs for malaria. Curr Pharm Des 15(25):2970–2985

    Article  PubMed  CAS  Google Scholar 

  102. Chow LM, Chan TH (2009) Novel classes of dimer antitumour drug candidates. Curr Pharm Des 15(6):659–674

    Article  PubMed  CAS  Google Scholar 

  103. Kim JW, Lee HS (2004) Tumor targeting by doxorubicin-RGD-4C peptide conjugate in an orthotopic mouse hepatoma model. Int J Mol Med 14(4):529–535

    PubMed  CAS  Google Scholar 

  104. Mukhopadhyay S, Barnes CM, Haskel A, Short SM, Barnes KR, Lippard SJ (2008) Conjugated platinum(IV)-peptide complexes for targeting angiogenic tumor vasculature. Bioconjug Chem 19(1):39–49

    Article  PubMed  CAS  Google Scholar 

  105. Breen EC, Walsh JJ (2010) Tubulin-targeting agents in hybrid drugs. Curr Med Chem 17(7):609–639

    Article  PubMed  CAS  Google Scholar 

  106. Rejniak KA, Anderson AR (2010) Hybrid models of tumor growth. Wiley Interdiscip Rev Syst Biol Med 3(1):115–125

    Google Scholar 

  107. Aplin AE, Howe A, Alahari SK, Juliano RL (1998) Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol Rev 50(2):197–263

    PubMed  CAS  Google Scholar 

  108. Eliceiri BP, Cheresh DA (1999) The role of alphav integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J Clin Invest 103(9):1227–1230

    Article  PubMed  CAS  Google Scholar 

  109. Enenstein J, Kramer RH (1994) Confocal microscopic analysis of integrin expression on the microvasculature and its sprouts in the neonatal foreskin. J Invest Dermatol 103(3):381–386

    Article  PubMed  CAS  Google Scholar 

  110. Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264(5158):569–571

    Article  PubMed  CAS  Google Scholar 

  111. Brooks PC, Montgomery AM, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA (1994) Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79(7):1157–1164

    Article  PubMed  CAS  Google Scholar 

  112. Storgard CM, Stupack DG, Jonczyk A, Goodman SL, Fox RI, Cheresh DA (1999) Decreased angiogenesis and arthritic disease in rabbits treated with an alphavbeta3 antagonist. J Clin Invest 103(1):47–54

    Article  PubMed  CAS  Google Scholar 

  113. Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715

    Article  PubMed  CAS  Google Scholar 

  114. Cleaver O, Melton DA (2003) Endothelial signaling during development. Nat Med 9(6):661–668

    Article  PubMed  CAS  Google Scholar 

  115. Pasqualini R, Koivunen E, Ruoslahti E (1997) Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 15(6):542–546

    Article  PubMed  CAS  Google Scholar 

  116. Felding-Habermann B, Mueller BM, Romerdahl CA, Cheresh DA (1992) Involvement of integrin alpha V gene expression in human melanoma tumorigenicity. J Clin Invest 89(6):2018–2022

    Article  PubMed  CAS  Google Scholar 

  117. Chen X, Plasencia C, Hou Y, Neamati N (2005) Synthesis and biological evaluation of dimeric RGD peptide-paclitaxel conjugate as a model for integrin-targeted drug delivery. J Med Chem 48(4):1098–1106

    Article  PubMed  CAS  Google Scholar 

  118. Janssen ML, Oyen WJ, Dijkgraaf I, Massuger LF, Frielink C, Edwards DS, Rajopadhye M, Boonstra H, Corstens FH, Boerman OC (2002) Tumor targeting with radiolabeled alpha(v)beta(3) integrin binding peptides in a nude mouse model. Cancer Res 62(21):6146–6151

    PubMed  CAS  Google Scholar 

  119. Ryppa C, Mann-Steinberg H, Biniossek ML, Satchi-Fainaro R, Kratz F (2009) In vitro and in vivo evaluation of a paclitaxel conjugate with the divalent peptide E-[c(RGDfK)2] that targets integrin alpha v beta 3. Int J Pharm 368(1–2):89–97

    Article  PubMed  CAS  Google Scholar 

  120. Temming K, Meyer DL, Zabinski R, Dijkers EC, Poelstra K, Molema G, Kok RJ (2006) Evaluation of RGD-targeted albumin carriers for specific delivery of auristatin E to tumor blood vessels. Bioconjug Chem 17(6):1385–1394

    Article  PubMed  CAS  Google Scholar 

  121. Liu Y, Bajjuri KM, Liu C, Sinha SC (2012) Targeting cell surface alpha(v)beta(3) integrin increases therapeutic efficacies of a legumain protease-activated auristatin prodrug. Mol Pharm 9(1):168–175

    Article  PubMed  CAS  Google Scholar 

  122. Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, Molema G, Lu PY, Scaria PV, Woodle MC (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 32(19):e149

    Article  PubMed  Google Scholar 

  123. Kunath K, Merdan T, Hegener O, Haberlein H, Kissel T (2003) Integrin targeting using RGD-PEI conjugates for in vitro gene transfer. J Gene Med 5(7):588–599

    Article  PubMed  CAS  Google Scholar 

  124. de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT (1992) The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255(5047):989–991

    Article  PubMed  Google Scholar 

  125. Kendall RL, Wang G, Thomas KA (1996) Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem Biophys Res Commun 226(2):324–328

    Article  PubMed  CAS  Google Scholar 

  126. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92(16):7297–7301

    Article  PubMed  CAS  Google Scholar 

  127. Kim WJ, Yockman JW, Lee M, Jeong JH, Kim YH, Kim SW (2005) Soluble Flt-1 gene delivery using PEI-g-PEG-RGD conjugate for anti-angiogenesis. J Control Release 106(1–2):224–234

    Article  PubMed  CAS  Google Scholar 

  128. Kim WJ, Yockman JW, Jeong JH, Christensen LV, Lee M, Kim YH, Kim SW (2006) Anti-angiogenic inhibition of tumor growth by systemic delivery of PEI-g-PEG-RGD/pCMV-sFlt-1 complexes in tumor-bearing mice. J Control Release 114(3):381–388

    Article  PubMed  CAS  Google Scholar 

  129. Curnis F, Sacchi A, Corti A (2002) Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. J Clin Invest 110(4):475–482

    PubMed  CAS  Google Scholar 

  130. Fiers W (1995) Biologic therapy with TNF: preclinical studies. In biologic therapy of cancer: principles and practice, ed. Lippincott. Philadelphia

  131. Fraker DL., Alexander HR, Pass HI (1995) Biologic therapy with TNF: systemic administration and isolation-perfusion. In Biologic therapy of cancer: principles and practice, ed. Lippincott. Philadelphia

  132. Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60(3):722–727

    PubMed  CAS  Google Scholar 

  133. van Laarhoven HW, Gambarota G, Heerschap A, Lok J, Verhagen I, Corti A, Toma S, Gallo Stampino C, van der Kogel A, Punt CJ (2006) Effects of the tumor vasculature targeting agent NGR-TNF on the tumor microenvironment in murine lymphomas. Invest New Drugs 24(1):27–36

    Article  PubMed  CAS  Google Scholar 

  134. Bordignon CCCF, Toma S, Manenti L, Rizzardi P, Curnis F, Gallo Stampino C, Corti A (2006) NGRhTNF, a new vascular targeting agent with a dual mechanism of action: preliminary clinical results [abstract 13052]. J Clin Oncol 24(18S)

  135. van Laarhoven HW, Fiedler W, Desar IM, van Asten JJ, Marreaud S, Lacombe D, Govaerts AS, Bogaerts J, Lasch P, Timmer-Bonte JN, Lambiase A, Bordignon C, Punt CJ, Heerschap A, van Herpen CM (2010) Phase I clinical and magnetic resonance imaging study of the vascular agent NGR-hTNF in patients with advanced cancers (European Organization for Research and Treatment of Cancer Study 16041). Clin Cancer Res 16(4):1315–1323

    Article  PubMed  CAS  Google Scholar 

  136. Santoro A, Pressiani T, Citterio G, Rossoni G, Donadoni G, Pozzi F, Rimassa L, Personeni N, Bozzarelli S, Colombi S, De Braud FG, Caligaris-Cappio F, Lambiase A, Bordignon C (2010) Activity and safety of NGR-hTNF, a selective vascular-targeting agent, in previously treated patients with advanced hepatocellular carcinoma. Br J Cancer 103(6):837–844

    Article  PubMed  CAS  Google Scholar 

  137. Mammoliti S, Andretta V, Bennicelli E, Caprioni F, Comandini D, Fornarini G, Guglielmi A, Pessino A, Sciallero S, Sobrero AF, Mazzola G, Lambiase A, Bordignon C (2010) Two doses of NGR-hTNF in combination with capecitabine plus oxaliplatin in colorectal cancer patients failing standard therapies. Ann Oncol 22(4):973–978

    Google Scholar 

  138. Gregorc V, Santoro A, Bennicelli E, Punt CJ, Citterio G, Timmer-Bonte JN, Caligaris Cappio F, Lambiase A, Bordignon C, van Herpen CM (2009) Phase Ib study of NGR-hTNF, a selective vascular targeting agent, administered at low doses in combination with doxorubicin to patients with advanced solid tumours. Br J Cancer 101(2):219–224

    Article  PubMed  CAS  Google Scholar 

  139. Gregorc V, Zucali PA, Santoro A, Ceresoli GL, Citterio G, De Pas TM, Zilembo N, De Vincenzo F, Simonelli M, Rossoni G, Spreafico A, Grazia Vigano M, Fontana F, De Braud FG, Bajetta E, Caligaris-Cappio F, Bruzzi P, Lambiase A, Bordignon C (2010) Phase II study of asparagine-glycine-arginine-human tumor necrosis factor alpha, a selective vascular targeting agent, in previously treated patients with malignant pleural mesothelioma. J Clin Oncol 28(15):2604–2611

    Article  PubMed  CAS  Google Scholar 

  140. ClinicalTrials.gov. NGR015: Randomized double-blind Phase III study of NGR-hTNF Plus Best Investigator’s Choice (BIC) Versus Placebo Plus BIC in previously treated patients with advanced malignant pleural mesothelioma (MPM). 2013; Available from: www.clinicaltrials.gov

  141. Corti A, Ponzoni M (2004) Tumor vascular targeting with tumor necrosis factor alpha and chemotherapeutic drugs. Ann NY Acad Sci 1028:104–112

    Article  PubMed  CAS  Google Scholar 

  142. Tandle A, Hanna E, Lorang D, Hajitou A, Moya CA, Pasqualini R, Arap W, Adem A, Starker E, Hewitt S, Libutti SK (2009) Tumor vasculature-targeted delivery of tumor necrosis factor-alpha. Cancer 115(1):128–139

    Article  PubMed  CAS  Google Scholar 

  143. Myers CE (1981) The pharmacology of the fluoropyrimidines. Pharmacol Rev 33(1):1–15

    PubMed  CAS  Google Scholar 

  144. van Laar JA, Rustum YM, Ackland SP, van Groeningen CJ, Peters GJ (1998) Comparison of 5-fluoro-2′-deoxyuridine with 5-fluorouracil and their role in the treatment of colorectal cancer. Eur J Cancer 34(3):296–306

    Article  PubMed  Google Scholar 

  145. Chu EMA, Fogarasi MC (2001) Pharmacology of cancer chemotherapy, 6 ed. In: DeVita VT (ed) Cancer principles and practice of oncology, ed. S.H.a.S.A.R, vol 1. Philadelphia

  146. Zhang Z, Hatta H, Tanabe K, Nishimoto S (2005) A new class of 5-fluoro-2′-deoxyuridine prodrugs conjugated with a tumor-homing cyclic peptide CNGRC by ester linkers: synthesis, reactivity, and tumor-cell-selective cytotoxicity. Pharm Res 22(3):381–389

    Article  PubMed  CAS  Google Scholar 

  147. Ndinguri MW, Solipuram R, Gambrell RP, Aggarwal S, Hammer RP (2009) Peptide targeting of platinum anti-cancer drugs. Bioconjug Chem 20(10):1869–1878

    Article  PubMed  CAS  Google Scholar 

  148. Temming K, Schiffelers RM, Molema G, Kok RJ (2005) RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug Resist Updat 8(6):381–402

    Article  PubMed  CAS  Google Scholar 

  149. Corti A, Curnis F, Arap W, Pasqualini R (2008) The neovasculature homing motif NGR: more than meets the eye. Blood 112(7):2628–2635

    Article  PubMed  CAS  Google Scholar 

  150. Zhang YF, Wang JC, Bian DY, Zhang X, Zhang Q (2010) Targeted delivery of RGD-modified liposomes encapsulating both combretastatin A-4 and doxorubicin for tumor therapy: in vitro and in vivo studies. Eur J Pharm Biopharm 74(3):467–473

    Article  PubMed  CAS  Google Scholar 

  151. Lindahl U, Lidholt K, Spillmann D, Kjellen L (1994) More to “heparin” than anticoagulation. Thromb Res 75(1):1–32

    Article  PubMed  CAS  Google Scholar 

  152. Soker S, Goldstaub D, Svahn CM, Vlodavsky I, Levi BZ, Neufeld G (1994) Variations in the size and sulfation of heparin modulate the effect of heparin on the binding of VEGF165 to its receptors. Biochem Biophys Res Commun 203(2):1339–1347

    Article  PubMed  CAS  Google Scholar 

  153. Zacharski LR, Ornstein DL (1998) Heparin and cancer. Thromb Haemost 80(1):10–23

    PubMed  CAS  Google Scholar 

  154. Mannori G, Crottet P, Cecconi O, Hanasaki K, Aruffo A, Nelson RM, Varki A, Bevilacqua MP (1995) Differential colon cancer cell adhesion to E-, P-, and L-selectin: role of mucin-type glycoproteins. Cancer Res 55(19):4425–4431

    PubMed  CAS  Google Scholar 

  155. Borsig L, Wong R, Hynes RO, Varki NM, Varki A (2002) Synergistic effects of L- and P-selectin in facilitating tumor metastasis can involve non-mucin ligands and implicate leukocytes as enhancers of metastasis. Proc Natl Acad Sci USA 99(4):2193–2198

    Article  PubMed  CAS  Google Scholar 

  156. Borsig L (2004) Selectins facilitate carcinoma metastasis and heparin can prevent them. News Physiol Sci 19:16–21

    PubMed  CAS  Google Scholar 

  157. Engelberg H (1999) Actions of heparin that may affect the malignant process. Cancer 85(2):257–272

    Article  PubMed  CAS  Google Scholar 

  158. Hirsh J (1984) Heparin induced bleeding. Nouv Rev Fr Hematol 26(4):261–266

    PubMed  CAS  Google Scholar 

  159. Phillips PG, Yalcin M, Cui H, Abdel-Nabi H, Sajjad M, Bernacki R, Veith J, Mousa SA (2011) Increased tumor uptake of chemotherapeutics and improved chemoresponse by novel non-anticoagulant low molecular weight heparin. Anticancer Res 31(2):411–419

    PubMed  CAS  Google Scholar 

  160. Rak J, Weitz JI (2003) Heparin and angiogenesis: size matters! Arterioscler Thromb Vasc Biol 23(11):1954–1955

    Article  PubMed  CAS  Google Scholar 

  161. Folkman J, Langer R, Linhardt RJ, Haudenschild C, Taylor S (1983) Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone. Science 221(4612):719–725

    Article  PubMed  CAS  Google Scholar 

  162. Florey HW, Poole JC, Meek GA (1959) Endothelial cells and cement lines. J Pathol Bacteriol 77(2):625–636

    Article  PubMed  CAS  Google Scholar 

  163. Hiebert LM, Jaques LB (1976) The observation of heparin on endothelium after injection. Thromb Res 8(2):195–204

    Article  PubMed  CAS  Google Scholar 

  164. Mahadoo J, Heibert L, Jaques LB (1978) Vascular sequestration of heparin. Thromb Res 12(1):79–90

    Article  PubMed  CAS  Google Scholar 

  165. Schaefer C, Lo Bue J, Gollub S (1980) The biodistribution of exogenous [35S]heparin in the dog. Proc Soc Exp Biol Med 164(1):69–74

    PubMed  CAS  Google Scholar 

  166. Fabian I, Bleiberg I, Aronson M (1978) Increased uptake and desulphation of heparin by mouse macrophages in the presence of polycations. Biochim Biophys Acta 544(1):69–76

    Article  PubMed  CAS  Google Scholar 

  167. Sakamoto N, Tanaka NG (1988) Mechanism of the synergistic effect of heparin and cortisone against angiogenesis and tumor growth. Cancer J 2:9–16

    CAS  Google Scholar 

  168. Thorpe PE, Derbyshire EJ, Andrade SP, Press N, Knowles PP, King S, Watson GJ, Yang YC, Rao-Bette M (1993) Heparin-steroid conjugates: new angiogenesis inhibitors with antitumor activity in mice. Cancer Res 53(13):3000–3007

    PubMed  CAS  Google Scholar 

  169. Ishihara M, Saito Y, Yura H, Ono K, Ishikawa K, Hattori H, Akaike T, Kurita A (2000) Heparin-carrying polystyrene to mediate cellular attachment and growth via interaction with growth factors. J Biomed Mater Res 50(2):144–152

    Article  PubMed  CAS  Google Scholar 

  170. Ishihara M, Ono K, Ishikawa K, Hattori H, Saito Y, Yura H, Akaike T, Ozeki Y, Tanaka S, Mochizuki H, Kurita A (2000) Enhanced ability of heparin-carrying polystyrene (HCPS) to bind to heparin-binding growth factors and to inhibit growth factor-induced endothelial cell growth. J Biochem 127(5):797–803

    Article  PubMed  CAS  Google Scholar 

  171. Park K, Kim K, Kwon IC, Kim SK, Lee S, Lee DY, Byun Y (2004) Preparation and characterization of self-assembled nanoparticles of heparin-deoxycholic acid conjugates. Langmuir 20(26):11726–11731

    Article  PubMed  CAS  Google Scholar 

  172. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284

    Article  PubMed  CAS  Google Scholar 

  173. Park K, Kim YS, Lee GY, Nam JO, Lee SK, Park RW, Kim SY, Kim IS, Byun Y (2007) Antiangiogenic effect of bile acid acylated heparin derivative. Pharm Res 24(1):176–185

    Article  PubMed  CAS  Google Scholar 

  174. Park K, Lee GY, Kim YS, Yu M, Park RW, Kim IS, Kim SY, Byun Y (2006) Heparin-deoxycholic acid chemical conjugate as an anticancer drug carrier and its antitumor activity. J Control Release 114(3):300–306

    Article  PubMed  CAS  Google Scholar 

  175. Lee DY, Kim SK, Kim YS, Son DH, Nam JH, Kim IS, Park RW, Kim SY, Byun Y (2007) Suppression of angiogenesis and tumor growth by orally active deoxycholic acid-heparin conjugate. J Control Release 118(3):310–317

    Article  PubMed  CAS  Google Scholar 

  176. Lee Y, Nam JH, Shin HC, Byun Y (2001) Conjugation of low-molecular-weight heparin and deoxycholic acid for the development of a new oral anticoagulant agent. Circulation 104(25):3116–3120

    Article  PubMed  CAS  Google Scholar 

  177. Lee DY, Park K, Kim SK, Park RW, Kwon IC, Kim SY, Byun Y (2008) Antimetastatic effect of an orally active heparin derivative on experimentally induced metastasis. Clin Cancer Res 14(9):2841–2849

    Article  PubMed  CAS  Google Scholar 

  178. Park JW, Jeon OC, Kim SK, Al-Hilal TA, Jin SJ, Moon HT, Yang VC, Kim SY, Byun Y (2010) High antiangiogenic and low anticoagulant efficacy of orally active low molecular weight heparin derivatives. J Control Release 148(3):317–326

    Article  PubMed  CAS  Google Scholar 

  179. Lee E, Kim YS, Bae SM, Kim SK, Jin S, Chung SW, Lee M, Moon HT, Jeon OC, Park RW, Kim IS, Byun Y, Kim SY (2009) Polyproline-type helical-structured low-molecular weight heparin (LMWH)-taurocholate conjugate as a new angiogenesis inhibitor. Int J Cancer 124(12):2755–2765

    Article  PubMed  CAS  Google Scholar 

  180. Miotti S, Canevari S, Menard S, Mezzanzanica D, Porro G, Pupa SM, Regazzoni M, Tagliabue E, Colnaghi MI (1987) Characterization of human ovarian carcinoma-associated antigens defined by novel monoclonal antibodies with tumor-restricted specificity. Int J Cancer 39(3):297–303

    Article  PubMed  CAS  Google Scholar 

  181. Coney LR, Tomassetti A, Carayannopoulos L, Frasca V, Kamen BA, Colnaghi MI, Zurawski VR Jr (1991) Cloning of a tumor-associated antigen: MOv18 and MOv19 antibodies recognize a folate-binding protein. Cancer Res 51(22):6125–6132

    PubMed  CAS  Google Scholar 

  182. Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR Jr, Kamen BA (1992) Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 52(12):3396–3401

    PubMed  CAS  Google Scholar 

  183. Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 338(2):284–293

    Article  PubMed  CAS  Google Scholar 

  184. Yu MK, Lee DY, Kim YS, Park K, Park SA, Son DH, Lee GY, Nam JH, Kim SY, Kim IS, Park RW, Byun Y (2007) Antiangiogenic and apoptotic properties of a novel amphiphilic folate-heparin-lithocholate derivative having cellular internality for cancer therapy. Pharm Res 24(4):705–714

    Article  PubMed  CAS  Google Scholar 

  185. Park K, Kim YS, Lee GY, Park RW, Kim IS, Kim SY, Byun Y (2008) Tumor endothelial cell targeted cyclic RGD-modified heparin derivative: inhibition of angiogenesis and tumor growth. Pharm Res 25(12):2786–2798

    Article  PubMed  CAS  Google Scholar 

  186. Nakagawa-Goto K, Nakamura S, Bastow KF, Nyarko A, Peng CY, Lee FY, Lee FC, Lee KH (2007) Antitumor agents. 256. Conjugation of paclitaxel with other antitumor agents: evaluation of novel conjugates as cytotoxic agents. Bioorg Med Chem Lett 17(10):2894–2898

    Article  PubMed  CAS  Google Scholar 

  187. Zefirova ON, Nurieva EV, Lemcke H, Ivanov AA, Shishov DV, Weiss DG, Kuznetsov SA, Zefirov NS (2008) Design, synthesis, and bioactivity of putative tubulin ligands with adamantane core. Bioorg Med Chem Lett 18(18):5091–5094

    Article  PubMed  CAS  Google Scholar 

  188. Amico VOG, Piatelli M, Tringali C, Fattorusso E, Magno S, Mayol L (1978) Caulerpenyne an unusual sesquiterpenoid from the green alga Caulerpa prolifera. Tetrahedron Lett 19(38):3593–3596

    Google Scholar 

  189. Barbier P, Guise S, Huitorel P, Amade P, Pesando D, Briand C, Peyrot V (2001) Caulerpenyne from Caulerpa taxifolia has an antiproliferative activity on tumor cell line SK-N-SH and modifies the microtubule network. Life Sci 70(4):415–429

    Article  PubMed  CAS  Google Scholar 

  190. Bourdron J, Commeiras L, Barbier P, Bourgarel-Rey V, Pasquier E, Vanthuyne N, Hubaud JC, Peyrot V, Parrain JL (2006) Caulerpenyne-colchicine hybrid: synthesis and biological evaluation. Bioorg Med Chem 14(16):5540–5548

    Article  PubMed  CAS  Google Scholar 

  191. Carter PJ, Senter PD (2008) Antibody-drug conjugates for cancer therapy. Cancer J 14(3):154–169

    Article  PubMed  CAS  Google Scholar 

  192. Lambert JM (2005) Drug-conjugated monoclonal antibodies for the treatment of cancer. Curr Opin Pharmacol 5(5):543–549

    Article  PubMed  CAS  Google Scholar 

  193. Schrama D, Reisfeld RA, Becker JC (2006) Antibody targeted drugs as cancer therapeutics. Nat Rev Drug Discov 5(2):147–159

    Article  PubMed  CAS  Google Scholar 

  194. Stack GD, Walsh JJ (2012) Optimising the delivery of tubulin targeting agents through antibody conjugation. Pharm Res 29(11):2972–2984

    Article  PubMed  CAS  Google Scholar 

  195. Safavy A, Bonner JA, Waksal HW, Buchsbaum DJ, Gillespie GY, Khazaeli MB, Arani R, Chen DT, Carpenter M, Raisch KP (2003) Synthesis and biological evaluation of paclitaxel-C225 conjugate as a model for targeted drug delivery. Bioconjug Chem 14(2):302–310

    Article  PubMed  CAS  Google Scholar 

  196. Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, Blattler WA, Lambert JM, Chari RV, Lutz RJ, Wong WL, Jacobson FS, Koeppen H, Schwall RH, Kenkare-Mitra SR, Spencer SD, Sliwkowski MX (2008) Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res 68(22):9280–9290

    Article  PubMed  CAS  Google Scholar 

  197. Krop IE, Beeram M, Modi S, Jones SF, Holden SN, Yu W, Girish S, Tibbitts J, Yi JH, Sliwkowski MX, Jacobson F, Lutzker SG, Burris HA (2010) Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J Clin Oncol 28(16):2698–2704

    Article  PubMed  CAS  Google Scholar 

  198. Burris HA 3rd, Rugo HS, Vukelja SJ, Vogel CL, Borson RA, Limentani S, Tan-Chiu E, Krop IE, Michaelson RA, Girish S, Amler L, Zheng M, Chu YW, Klencke B, O’Shaughnessy JA (2011) Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol 29(4):398–405

    Article  PubMed  CAS  Google Scholar 

  199. Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3(1):81–85

    PubMed  CAS  Google Scholar 

  200. Haffner MC, Kronberger IE, Ross JS, Sheehan CE, Zitt M, Muhlmann G, Ofner D, Zelger B, Ensinger C, Yang XJ, Geley S, Margreiter R, Bander NH (2009) Prostate-specific membrane antigen expression in the neovasculature of gastric and colorectal cancers. Hum Pathol 40(12):1754–1761

    Article  PubMed  CAS  Google Scholar 

  201. Bostwick DG, Grignon DJ, Hammond ME, Amin MB, Cohen M, Crawford D, Gospadarowicz M, Kaplan RS, Miller DS, Montironi R, Pajak TF, Pollack A, Srigley JR, Yarbro JW (2000) Prognostic factors in prostate cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med 124(7):995–1000

    PubMed  CAS  Google Scholar 

  202. Liu H, Moy P, Kim S, Xia Y, Rajasekaran A, Navarro V, Knudsen B, Bander NH (1997) Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res 57(17):3629–3634

    PubMed  CAS  Google Scholar 

  203. Pettit GR (1997) The dolastatins. Fortschr Chem Org Naturst 70:1–79

    Article  PubMed  CAS  Google Scholar 

  204. Wang X, Ma D, Olson WC, Heston WD (2011) In vitro and in vivo responses of advanced prostate tumors to PSMA ADC, an auristatin-conjugated antibody to prostate-specific membrane antigen. Mol Cancer Ther 10(9):1728–1739

    Article  PubMed  CAS  Google Scholar 

  205. Milowsky MI, Nanus DM, Kostakoglu L, Sheehan CE, Vallabhajosula S, Goldsmith SJ, Ross JS, Bander NH (2007) Vascular targeted therapy with anti-prostate-specific membrane antigen monoclonal antibody J591 in advanced solid tumors. J Clin Oncol 25(5):540–547

    Article  PubMed  CAS  Google Scholar 

  206. Castellani P, Viale G, Dorcaratto A, Nicolo G, Kaczmarek J, Querze G, Zardi L (1994) The fibronectin isoform containing the ED-B oncofetal domain: a marker of angiogenesis. Int J Cancer 59(5):612–618

    Article  PubMed  CAS  Google Scholar 

  207. Viti F, Tarli L, Giovannoni L, Zardi L, Neri D (1999) Increased binding affinity and valence of recombinant antibody fragments lead to improved targeting of tumoral angiogenesis. Cancer Res 59(2):347–352

    PubMed  CAS  Google Scholar 

  208. Tarli L, Balza E, Viti F, Borsi L, Castellani P, Berndorff D, Dinkelborg L, Neri D, Zardi L (1999) A high-affinity human antibody that targets tumoral blood vessels. Blood 94(1):192–198

    PubMed  CAS  Google Scholar 

  209. Borsi L, Balza E, Bestagno M, Castellani P, Carnemolla B, Biro A, Leprini A, Sepulveda J, Burrone O, Neri D, Zardi L (2002) Selective targeting of tumoral vasculature: comparison of different formats of an antibody (L19) to the ED-B domain of fibronectin. Int J Cancer 102(1):75–85

    Article  PubMed  CAS  Google Scholar 

  210. Santimaria M, Moscatelli G, Viale GL, Giovannoni L, Neri G, Viti F, Leprini A, Borsi L, Castellani P, Zardi L, Neri D, Riva P (2003) Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res 9(2):571–579

    PubMed  CAS  Google Scholar 

  211. Carnemolla B, Castellani P, Ponassi M, Borsi L, Urbini S, Nicolo G, Dorcaratto A, Viale G, Winter G, Neri D, Zardi L (1999) Identification of a glioblastoma-associated tenascin-C isoform by a high affinity recombinant antibody. Am J Pathol 154(5):1345–1352

    Article  PubMed  CAS  Google Scholar 

  212. Brack SS, Silacci M, Birchler M, Neri D (2006) Tumor-targeting properties of novel antibodies specific to the large isoform of tenascin-C. Clin Cancer Res 12(10):3200–3208

    Article  PubMed  CAS  Google Scholar 

  213. Gerber HP, Senter PD, Grewal IS (2009) Antibody drug-conjugates targeting the tumor vasculature: current and future developments. MAbs 1(3):247–253

    Article  PubMed  Google Scholar 

  214. Vitetta ES, Fulton RJ, May RD, Till M, Uhr JW (1987) Redesigning nature’s poisons to create anti-tumor reagents. Science 238(4830):1098–1104

    Article  PubMed  CAS  Google Scholar 

  215. Pastan I, FitzGerald D (1991) Recombinant toxins for cancer treatment. Science 254(5035):1173–1177

    Article  PubMed  CAS  Google Scholar 

  216. Vitetta ES, Stone M, Amlot P, Fay J, May R, Till M, Newman J, Clark P, Collins R, Cunningham D et al (1991) Phase I immunotoxin trial in patients with B-cell lymphoma. Cancer Res 51(15):4052–4058

    PubMed  CAS  Google Scholar 

  217. Vitetta ES, Thorpe PE (1991) Immunotoxins containing ricin or its A chain. Semin Cell Biol 2(1):47–58

    PubMed  CAS  Google Scholar 

  218. Ramakrishnan S, Olson TA, Bautch VL, Mohanraj D (1996) Vascular endothelial growth factor-toxin conjugate specifically inhibits KDR/flk-1-positive endothelial cell proliferation in vitro and angiogenesis in vivo. Cancer Res 56(6):1324–1330

    PubMed  CAS  Google Scholar 

  219. Olson TA, Mohanraj D, Roy S, Ramakrishnan S (1997) Targeting the tumor vasculature: inhibition of tumor growth by a vascular endothelial growth factor-toxin conjugate. Int J Cancer 73(6):865–870

    Article  PubMed  CAS  Google Scholar 

  220. Soker S, Fidder H, Neufeld G, Klagsbrun M (1996) Characterization of novel vascular endothelial growth factor (VEGF) receptors on tumor cells that bind VEGF165 via its exon 7-encoded domain. J Biol Chem 271(10):5761–5767

    Article  PubMed  CAS  Google Scholar 

  221. Soker S, Gollamudi-Payne S, Fidder H, Charmahelli H, Klagsbrun M (1997) Inhibition of vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation by a peptide corresponding to the exon 7-encoded domain of VEGF165. J Biol Chem 272(50):31582–31588

    Article  PubMed  CAS  Google Scholar 

  222. Gitay-Goren H, Cohen T, Tessler S, Soker S, Gengrinovitch S, Rockwell P, Klagsbrun M, Levi BZ, Neufeld G (1996) Selective binding of VEGF121 to one of the three vascular endothelial growth factor receptors of vascular endothelial cells. J Biol Chem 271(10):5519–5523

    Article  PubMed  CAS  Google Scholar 

  223. Wild R, Dhanabal M, Olson TA, Ramakrishnan S (2000) Inhibition of angiogenesis and tumour growth by VEGF121-toxin conjugate: differential effect on proliferating endothelial cells. Br J Cancer 83(8):1077–1083

    Article  PubMed  CAS  Google Scholar 

  224. Baekelandt M (2002) Irofulven (MGI Pharma). Curr Opin Investig Drugs 3(10):1517–1526

    PubMed  CAS  Google Scholar 

  225. Eckhardt SG, Baker SD, Britten CD, Hidalgo M, Siu L, Hammond LA, Villalona-Calero MA, Felton S, Drengler R, Kuhn JG, Clark GM, Smith SL, MacDonald JR, Smith C, Moczygemba J, Weitman S, Von Hoff DD, Rowinsky EK (2000) Phase I and pharmacokinetic study of irofulven, a novel mushroom-derived cytotoxin, administered for five consecutive days every four weeks in patients with advanced solid malignancies. J Clin Oncol 18(24):4086–4097

    PubMed  CAS  Google Scholar 

  226. Alexandre J, Raymond E, Kaci MO, Brain EC, Lokiec F, Kahatt C, Faivre S, Yovine A, Goldwasser F, Smith SL, MacDonald JR, Misset JL, Cvitkovic E (2004) Phase I and pharmacokinetic study of irofulven administered weekly or biweekly in advanced solid tumor patients. Clin Cancer Res 10(10):3377–3385

    Article  PubMed  CAS  Google Scholar 

  227. Griffioen AW, van der Schaft DW, Barendsz-Janson AF, Cox A, Struijker Boudier HA, Hillen HF, Mayo KH (2001) Anginex, a designed peptide that inhibits angiogenesis. Biochem J 354(Pt 2):233–242

    Article  PubMed  CAS  Google Scholar 

  228. Dings RP, Mayo KH (2007) A journey in structure-based drug discovery: from designed peptides to protein surface topomimetics as antibiotic and antiangiogenic agents. Acc Chem Res 40(10):1057–1065

    Article  PubMed  CAS  Google Scholar 

  229. Thijssen VL, Postel R, Brandwijk RJ, Dings RP, Nesmelova I, Satijn S, Verhofstad N, Nakabeppu Y, Baum LG, Bakkers J, Mayo KH, Poirier F, Griffioen AW (2006) Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy. Proc Natl Acad Sci USA 103(43):15975–15980

    Article  PubMed  CAS  Google Scholar 

  230. Camby I, Le Mercier M, Lefranc F, Kiss R (2006) Galectin-1: a small protein with major functions. Glycobiology 16(11):137R–157R

    Article  PubMed  CAS  Google Scholar 

  231. Rabinovich GA (2005) Galectin-1 as a potential cancer target. Br J Cancer 92(7):1188–1192

    Article  PubMed  CAS  Google Scholar 

  232. Dings RP, Van Laar ES, Loren M, Webber J, Zhang Y, Waters SJ, Macdonald JR, Mayo KH (2010) Inhibiting tumor growth by targeting tumor vasculature with galectin-1 antagonist anginex conjugated to the cytotoxic acylfulvene, 6-hydroxylpropylacylfulvene. Bioconjug Chem 21(1):20–27

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Walsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prokopiou, E.M., Ryder, S.A. & Walsh, J.J. Tumour vasculature targeting agents in hybrid/conjugate drugs. Angiogenesis 16, 503–524 (2013). https://doi.org/10.1007/s10456-013-9347-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-013-9347-8

Keywords

Navigation