Skip to main content
Log in

Regurgitation Hemodynamics Alone Cause Mitral Valve Remodeling Characteristic of Clinical Disease States In Vitro

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Mitral valve regurgitation is a challenging clinical condition that is frequent, highly varied, and poorly understood. While the causes of mitral regurgitation are multifactorial, how the hemodynamics of regurgitation impact valve tissue remodeling is an understudied phenomenon. We employed a pseudo-physiological flow loop capable of long-term organ culture to investigate the early progression of remodeling in living mitral valves placed in conditions resembling mitral valve prolapse (MVP) and functional mitral regurgitation (FMR). Valve geometry was altered to mimic the hemodynamics of controls (no changes from native geometry), MVP (5 mm displacement of papillary muscles towards the annulus), and FMR (5 mm apical, 5 mm lateral papillary muscle displacement, 65% larger annular area). Flow measurements ensured moderate regurgitant fraction for regurgitation groups. After 1-week culture, valve tissues underwent mechanical and compositional analysis. MVP conditioned tissues were less stiff, weaker, and had elevated collagen III and glycosaminoglycans. FMR conditioned tissues were stiffer, more brittle, less extensible, and had more collagen synthesis, remodeling, and crosslinking related enzymes and proteoglycans, including decorin, matrix metalloproteinase-1, and lysyl oxidase. These models replicate clinical findings of MVP (myxomatous remodeling) and FMR (fibrotic remodeling), indicating that valve cells remodel extracellular matrix in response to altered mechanical homeostasis resulting from disease hemodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

FMR:

Functional mitral regurgitation

GAG:

Glycosaminoglycan

LOX:

Lysyl oxidase

MMP-1:

Matrix metalloproteinase-1

MVP:

Mitral valve prolapse

RUFLS:

Rice University flow loop system

References

  1. Balaoing, L. R., A. D. Post, H. Liu, K. T. Minn, and K. J. Grande-Allen. Age-related changes in aortic valve hemostatic protein regulation. Arterioscler. Thromb. Vasc. Biol. 34:72–80, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barber, J. E., F. K. Kasper, N. B. Ratliff, D. M. Cosgrove, B. P. Griffin, I. Vesely, and F. K. Kasper. Mechanical properties of myxomatous mitral valves. J. Thorac. Cardiovasc. Surg. 122:955–962, 2001.

    Article  CAS  PubMed  Google Scholar 

  3. Barber, J. E., N. B. Ratliff, D. M. Cosgrove, B. P. Griffin, and I. Vesely. Myxomatous mitral valve chordae. I: Mechanical properties. J. Heart Valve Dis. 10:320–324, 2001.

    CAS  PubMed  Google Scholar 

  4. Benjamin, M. M., R. L. Smith, and P. A. Grayburn. Ischemic and functional mitral regurgitation in heart failure: natural history and treatment. Curr. Cardiol. Rep. 16:517, 2014.

    Article  PubMed  Google Scholar 

  5. Bhattacharya, S., and Z. He. Annulus tension of the prolapsed mitral valve corrected by edge-to-edge repair. J. Biomech. 45:562–568, 2012.

    Article  PubMed  Google Scholar 

  6. Boltwood, C. M., C. Tei, M. Wong, and P. M. Shah. Quantitative echocardiography of the mitral complex in dilated cardiomyopathy: the mechanism of functional mitral regurgitation. Circulation 68:498–508, 1983.

    Article  CAS  PubMed  Google Scholar 

  7. Carew, E. O., and I. Vesely. A new method of estimating gauge length for porcine aortic valve test specimens. J. Biomech. 36:1039–1042, 2003.

    Article  PubMed  Google Scholar 

  8. Chan, K. M. J., P. P. Punjabi, M. Flather, R. Wage, K. Symmonds, I. Roussin, S. Rahman-Haley, D. J. Pennell, P. J. Kilner, G. D. Dreyfus, and J. R. Pepper. Coronary artery bypass surgery with or without mitral valve annuloplasty in moderate functional ischemic mitral regurgitation: final results of the Randomized Ischemic Mitral Evaluation (RIME) trial. Circulation 126:2502–2510, 2012.

    Article  PubMed  Google Scholar 

  9. Cole, W. G., D. Chan, A. J. Hickey, and D. E. Wilcken. Collagen composition of normal and myxomatous human mitral heart valves. Biochem. J. 219:451–460, 1984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Croft, L. R., J. H. Jimenez, R. C. Gorman, J. H. Gorman, and A. P. Yoganathan. Efficacy of the edge-to-edge repair in the setting of a dilated ventricle: an in vitro study. Ann. Thorac. Surg. 84:1578–1584, 2007.

    Article  PubMed  Google Scholar 

  11. Dal-Bianco, J. P., E. Aikawa, J. Bischoff, J. L. Guerrero, M. D. Handschumacher, S. Sullivan, B. Johnson, J. S. Titus, Y. Iwamoto, J. Wylie-Sears, R. A. Levine, and A. Carpentier. Active adaptation of the tethered mitral valve: insights into a compensatory mechanism for functional mitral regurgitation. Circulation 120:334–342, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dayan, D., Y. Hiss, A. Hirshberg, J. J. Bubis, and M. Wolman. Are the polarization colors of Picrosirius red-stained collagen determined only by the diameter of the fibers ? Histochemistry 93:27–29, 1989.

    Article  CAS  PubMed  Google Scholar 

  13. De Agustín, J. A., P. Marcos-Alberca, C. Fernandez-Golfin, A. Gonçalves, G. Feltes, I. J. Nuñez-Gil, C. Almeria, J. L. Rodrigo, L. Perez de Isla, C. Macaya, and J. Zamorano. Direct measurement of proximal isovelocity surface area by single-beat three-dimensional color Doppler echocardiography in mitral regurgitation: a validation study. J. Am. Soc. Echocardiogr. 25:815–823, 2012.

    Article  PubMed  Google Scholar 

  14. Delling, F. N., and R. S. Vasan. Epidemiology and pathophysiology of mitral valve prolapse: new insights into disease progression, genetics, and molecular basis. Circulation 129:2158–2170, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fisher, L. W., J. T. Stubbs, and M. F. Young. Antisera and cDNA probes to human and certain animal model bone matrix noncollagenous proteins. Acta Orthop. Scand. Suppl. 266:61–65, 1995.

    CAS  PubMed  Google Scholar 

  16. Fukamachi, K., Z. B. Popović, M. Inoue, K. Doi, S. Schenk, Y. Ootaki, M. W. Kopcak, and P. M. McCarthy. Changes in mitral annular and left ventricular dimensions and left ventricular pressure-volume relations after off-pump treatment of mitral regurgitation with the Coapsys device. Eur. J. Cardiothorac. Surg. 25:352–357, 2004.

    Article  PubMed  Google Scholar 

  17. Gheewala, N., and K. J. Grande-Allen. Design and mechanical evaluation of a physiological mitral valve organ culture system. Cardiovasc. Eng. Technol. 1:123–131, 2010.

    Article  Google Scholar 

  18. Gheewala, N., K. A. Schwarz, and K. J. Grande-Allen. Organ culture of porcine mitral valves as a novel experimental paradigm. Cardiovasc. Eng. Technol. 4:139–150, 2013.

    Article  Google Scholar 

  19. Grande-Allen, K. J., J. E. Barber, K. M. Klatka, P. L. Houghtaling, I. Vesely, C. S. Moravec, and P. M. McCarthy. Mitral valve stiffening in end-stage heart failure: evidence of an organic contribution to functional mitral regurgitation. J. Thorac. Cardiovasc. Surg. 130:783–790, 2005.

    Article  PubMed  Google Scholar 

  20. Grande-Allen, K. J., A. G. Borowski, R. W. Troughton, P. L. Houghtaling, N. R. Dipaola, C. S. Moravec, I. Vesely, and B. P. Griffin. Apparently normal mitral valves in patients with heart failure demonstrate biochemical and structural derangements: an extracellular matrix and echocardiographic study. J. Am. Coll. Cardiol. 45:54–61, 2005.

    Article  CAS  PubMed  Google Scholar 

  21. Grande-Allen, K. J., B. P. Griffin, A. Calabro, N. B. Ratliff, D. M. Cosgrove, and I. Vesely. Myxomatous mitral valve chordae. II: Selective elevation of glycosaminoglycan content. J. Heart Valve Dis. 10:325–332, 2001; discussion 332–333.

    CAS  PubMed  Google Scholar 

  22. Grande-Allen, K. J., B. P. Griffin, N. B. Ratliff, D. M. Cosgrove, and I. Vesely. Glycosaminoglycan profiles of myxomatous mitral leaflets and chordae parallel the severity of mechanical alterations. J. Am. Coll. Cardiol. 42:271–277, 2003.

    Article  CAS  PubMed  Google Scholar 

  23. Grande-Allen, K. J., and J. Liao. The heterogeneous biomechanics and mechanobiology of the mitral valve: implications for tissue engineering. Curr. Cardiol. Rep. 13:113–120, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Granier, M., M. O. Jensen, J. L. Honge, A. Bel, P. Menasché, S. L. Nielsen, A. Carpentier, R. A. Levine, and A. A. Hagège. Consequences of mitral valve prolapse on chordal tension: ex vivo and in vivo studies in large animal models. J. Thorac. Cardiovasc. Surg. 142:1585–1587, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  25. He, S., A. A. Fontaine, E. Schwammenthal, A. P. Yoganathan, and R. A. Levine. Integrated mechanism for functional mitral regurgitation. Circulation 96:1826, 1997.

    Article  CAS  PubMed  Google Scholar 

  26. Herovici, C. A polychrome stain for differentiating precollagen from collagen. Stain Technol. 38:204, 1963.

    Google Scholar 

  27. Jimenez, J. H., J. Ritchie, Z. He, and A. P. Yoganathan. Mechanics of the mitral valve: in vitro studies. Conf. Proc. IEEE. Eng. Med. Biol. Soc. 5:3727–3729, 2004.

    PubMed  Google Scholar 

  28. Jimenez, J. H., D. D. Soerensen, Z. He, S. He, and A. P. Yoganathan. Effects of a saddle shaped annulus on mitral valve function and chordal force distribution: an in vitro study. Ann. Biomed. Eng. 31:1171–1181, 2003.

    Article  PubMed  Google Scholar 

  29. Jimenez, J. H., D. D. Soerensen, Z. He, J. Ritchie, and A. P. Yoganathan. Effects of papillary muscle position on chordal force distribution: an in vitro study. J. Heart Valve Dis. 14:295–302, 2005.

    PubMed  Google Scholar 

  30. Junqueira, L. C., G. Bignolas, and R. R. Brentani. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem. J. 11:447–455, 1979.

    Article  CAS  PubMed  Google Scholar 

  31. Kron, I. L., J. Hung, J. R. Overbey, D. Bouchard, A. C. Gelijns, A. J. Moskowitz, P. Voisine, P. T. O’Gara, M. Argenziano, R. E. Michler, M. Gillinov, J. D. Puskas, J. S. Gammie, M. J. Mack, P. K. Smith, C. Sai-Sudhakar, T. J. Gardner, G. Ailawadi, X. Zeng, K. O’Sullivan, M. K. Parides, R. Swayze, V. Thourani, E. A. Rose, L. P. Perrault, and M. A. Acker. Predicting recurrent mitral regurgitation after mitral valve repair for severe ischemic mitral regurgitation. J. Thorac. Cardiovasc. Surg. 149:752–761, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kunzelman, K. S., and R. P. Cochran. Stress/strain characteristics of porcine mitral valve tissue: parallel versus perpendicular collagen orientation. J. Card. Surg. 7:71–78, 1992.

    Article  CAS  PubMed  Google Scholar 

  33. Lacerda, C. M. R., J. Kisiday, B. Johnson, and E. C. Orton. Local serotonin mediates cyclic strain-induced phenotype transformation, matrix degradation, and glycosaminoglycan synthesis in cultured sheep mitral valves. Am. J. Physiol. Hear Circ. Physiol. 302:H1983–H1990, 2012.

    Article  CAS  Google Scholar 

  34. Lacerda, C. M. R., H. B. Maclea, J. D. Kisiday, and E. C. Orton. Static and cyclic tensile strain induce myxomatous effector proteins and serotonin in canine mitral valves. J. Vet. Cardiol. 14:223–230, 2012.

    Article  PubMed  Google Scholar 

  35. Little, S. H., S. R. Igo, M. McCulloch, C. J. Hartley, Y. Nosé, and W. A. Zoghbi. Three-dimensional ultrasound imaging model of mitral valve regurgitation: design and evaluation. Ultrasound Med. Biol. 34:647–654, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Little, S. H., S. R. Igo, B. Pirat, M. McCulloch, C. J. Hartley, Y. Nosé, and W. A. Zoghbi. In vitro validation of real-time three-dimensional color Doppler echocardiography for direct measurement of proximal isovelocity surface area in mitral regurgitation. Am. J. Cardiol. 99:1440–1447, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nielsen, S. L., H. Nygaard, A. A. Fontaine, J. M. Hasenkam, S. He, N. T. Andersen, and A. P. Yoganathan. Chordal force distribution determines systolic mitral leaflet configuration and severity of functional mitral regurgitation. J. Am. Coll. Cardiol. 33:843–853, 1999.

    Article  CAS  PubMed  Google Scholar 

  38. Nielsen, S. L., H. Nygaard, L. Mandrup, A. A. Fontaine, J. M. Hasenkam, S. He, and A. P. Yoganathan. Mechanism of incomplete mitral leaflet coaptation—interaction of chordal restraint and changes in mitral leaflet coaptation geometry. J. Biomech. Eng. 124:596, 2002.

    Article  PubMed  Google Scholar 

  39. Otsuji, Y. Isolated annular dilation does not usually cause important functional mitral regurgitation. J. Am. Coll. Cardiol. 39:1651–1656, 2002.

    Article  PubMed  Google Scholar 

  40. Padala, M., R. A. Hutchison, L. R. Croft, J. H. Jimenez, R. C. Gorman, J. H. Gorman, M. S. Sacks, and A. P. Yoganathan. Saddle shape of the mitral annulus reduces systolic strains on the P2 segment of the posterior mitral leaflet. Ann. Thorac. Surg. 88:1499–1504, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Padala, M., S. N. Powell, L. R. Croft, V. H. Thourani, A. P. Yoganathan, and D. H. Adams. Mitral valve hemodynamics after repair of acute posterior leaflet prolapse: quadrangular resection versus triangular resection versus neochordoplasty. J. Thorac. Cardiovasc. Surg. 138:309–315, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Quick, D. W., K. S. Kunzelman, J. M. Kneebone, and R. P. Cochran. Collagen synthesis is upregulated in mitral valves subjected to altered stress. ASAIO J. 43:181–186, 1997.

    CAS  PubMed  Google Scholar 

  43. Rich, L., and P. Whittaker. Collagen and picrosirius red staining: a polarized light assessment of fibrillar hue and spatial distribution. Braz. J. Morphol. Sci. 22:97–104, 2005.

    Google Scholar 

  44. Rossi, A., F. L. Dini, P. Faggiano, E. Agricola, M. Cicoira, S. Frattini, A. Simioniuc, M. Gullace, S. Ghio, M. Enriquez-Sarano, and P. L. Temporelli. Independent prognostic value of functional mitral regurgitation in patients with heart failure. A quantitative analysis of 1256 patients with ischaemic and non-ischaemic dilated cardiomyopathy. Heart 97:1675–1680, 2011.

    Article  PubMed  Google Scholar 

  45. Stephens, E. H., J. L. Carroll, and K. J. Grande-Allen. The use of collagenase III for the isolation of porcine aortic valvular interstitial cells: rationale and optimization. J. Heart Valve Dis. 16:175–183, 2007.

    PubMed  Google Scholar 

  46. Stephens, E. H., and K. J. Grande-Allen. Age-related changes in collagen synthesis and turnover in porcine heart valves. J. Heart Valve Dis. 16:672–682, 2007.

    PubMed  Google Scholar 

  47. Stephens, E. H., T. A. Timek, G. T. Daughters, J. J. Kuo, A. M. Patton, L. S. Baggett, N. B. Ingels, D. C. Miller, and K. J. Grande-Allen. Significant changes in mitral valve leaflet matrix composition and turnover with tachycardia-induced cardiomyopathy. Circulation 120:S112–S119, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takaseya, T., A. Shiose, R. M. Saraiva, H. Fumoto, Y. Arakawa, M. Juravic, P. Lombardi, and K. Fukamachi. Novel epicardial off-pump device for mitral regurgitation: acute evaluation. Eur. J. Cardiothorac. Surg. 37:1291–1296, 2010.

    Article  PubMed  Google Scholar 

  49. Thavendiranathan, P., S. Liu, S. Datta, S. Rajagopalan, T. Ryan, S. R. Igo, M. S. Jackson, S. H. Little, N. De-Michelis, and M. A. Vannan. Quantification of chronic functional mitral regurgitation by automated 3-dimensional peak and integrated proximal isovelocity surface area and stroke volume techniques using real-time 3-dimensional volume color doppler echocardiography: in vitro and clinic. Circ. Cardiovasc. Imaging 6:125–133, 2013.

    Article  PubMed  Google Scholar 

  50. Zhang, Y., L. Ma, and H. Zhao. Efficacy of mitral valve repair as an adjunct procedure to coronary artery bypass grafting in moderate ischemic mitral regurgitation: a meta-analysis of randomized trials. J. Card. Surg. 2015. doi:10.1111/jocs.12585.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. Larry Fisher, NIH, for his gift of decorin antibody used in the course of this research. This work was supported by the National Institutes of Health [T32HL007676]; and the American Heart Association [13PRE14110003 to P.C.].

Conflict of interest

Dr. Stephen H. Little has received research funds from St. Jude Medical, Medtronic Inc, Abbott Vascular Structural Heart. Dr. Jane Grande-Allen has served as a consultant for Edwards Lifesciences. Other authors have no disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jane Grande-Allen.

Additional information

Associate Editor Ender Finol oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Video 1

Control Valve in Imaging Flow Loop (MP4 2186 kb)

Supplemental Video 2

MVP Valve in Imaging Flow Loop (MP4 592 kb)

FMR Valve in Imaging Flow Loop (MOV 19665 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Connell, P.S., Azimuddin, A.F., Kim, S.E. et al. Regurgitation Hemodynamics Alone Cause Mitral Valve Remodeling Characteristic of Clinical Disease States In Vitro . Ann Biomed Eng 44, 954–967 (2016). https://doi.org/10.1007/s10439-015-1398-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1398-0

Keywords

Navigation