Skip to main content
Log in

The evolution of the feather: Sinosauropteryx, life, death and preservation of an alleged feathered dinosaur

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Among the spectacular dinosaur fossils reported from the Jehol Group of northeastern China is the most celebrated, Sinosauropteryx, which continues to excite interest in questions concerning feather origins—most recently with alleged identifications of melanosomes and colour in its integumental structures, which proved unfounded. The crucial significance of Sinosauropteryx is undoubtedly the focus on its basal theropod status and potentially pivotal position in informing models of the early evolutionary origin of modern feathers. On the basis of new evidence in Sinosauropteryx NIGP 127587 and GMV 2124, it is shown here that the alleged protofeathers were not free filaments but part of a composite tissue. It is shown that the tail terminates in a unique, smoothly edged, spatula-shaped structure. The dinosaurs died in the vicinity of a lake. For the first time, the taphonomy of Sinosauropteryx is investigated on the basis of aboveground decomposition experiments on living animals so as to get a better understanding of conditions preceding the death of the animal, its death, decomposition and finally preservation of soft tissue as manifested in the fossil. The signs point strongly to invertebrate colonization of the carcass of Sinosauropteryx rather than vertebrate predation or scavenging, with moderate decay associated with the purge fluids while major decay was forestalled by burial, at most a few days after death. Lastly, a theory that the opisthotonic posture of fossils such as Sinosauropteryx NIGP 127587 occurred perimortem as a consequence of neural spasms provides the basis for a forensic reconstruction of the stages leading to the dinosaur’s death and the final preserved position of the external, dorsally preserved soft tissue, which proves to be more consistent with a uniform crest than individual, free protofeathers.

Zusammenfassung

Die Evolution der Feder: Sinosauropteryx —Leben, Tod und Konservierung eines mutmaßlich befiederten Dinosauriers

Unter den spektakulären Dinosaurierfossilien, die in der Jehol-Gruppe in Nordostchina gefunden wurden, befindet sich der berühmte Sinosauropteryx, der nach wie vor Interesse an Fragen zum Ursprung der Feder hervorruft. Kürzlich wurden mutmaßliche Melanosomen und Farbe in den Integumentstrukturen identifiziert, was sich jedoch als nicht zutreffend erwies. Die entscheidende Bedeutung von Sinosauropteryx hat sich zweifellos auf seinen Status als basaler Theropode und seinen potenziell ausschlaggebenden Informationswert für Modelle des frühen evolutionären Ursprungs moderner Federn konzentriert. Anhand neuer Befunde bei Sinosauropteryx NIGP 127587 und GMV 2124 zeigen wir hier, dass die mutmaßlichen Protofedern nicht freie Filamente, sondern Teil eines Mischgewebes waren. Des Weiteren wird gezeigt, dass der Schwanz in einer einzigartigen glattrandigen spatelförmigen Struktur endet. Darüber hinaus wird die Taphonomie von Sinosauropteryx anhand von oberirdischen Verwesungsexperimenten mit lebenden Tieren untersucht, um ein besseres Verständnis der Bedingungen, die dem Tod des Tieres vorausgingen, seines Todes, seiner Verwesung und schließlich der Konservierung weichen Gewebes, wie es sich im Fossil offenbart, zu erlangen. Die Indizien deuten stark darauf hin, dass der Kadaver von Sinosauropteryx nicht Prädation oder Aasfraß durch Wirbeltiere ausgesetzt war, sondern von Wirbellosen besiedelt wurde—moderate Verwesung stand mit Zutritt von Flüssigkeiten in Zusammenhang, während starke Verwesung durch Bedeckung des Kadavers höchstens wenige Tage nach dem Tod verhindert wurde. Schließlich lieferte eine Theorie, gemäß derer die opisthotone Haltung von Fossilien wie Sinosauropteryx NIGP 127587 als Folge neuraler Spasmen während des Todes auftrat, die Grundlage für eine forensische Rekonstruktion der Stadien, die zum Tod des Dinosauriers führten, und der endgültigen konservierten Position des äußeren dorsal konservierten Weichgewebes, was eher mit einer uniformen Haube als mit einzelnen freien Protofedern übereinstimmt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Some of the displacement may have been exacerbated by decay and burial.

References

  • Amendt J, Krettek R, Zehner R (2004) Forensic entomology. Naturwissenscaften 91:51–65

    Article  CAS  Google Scholar 

  • Blagoderov VA, Lukashevich ED, Mostovski MB (2002) Order Diptera Linne, 1758. The true flies. In: Rasnitsyn AP, Quicke DLJ (eds) History of insects. Kluwer, London, pp 227–240

    Google Scholar 

  • Britt BB, Scheetz RD, Dangerfield A (2008) A suite of dermestid beetle traces on dinosaur bone from the Upper Jurassic Morrison Formation, Wyoming, USA. Ichnos 15(2):59–71

    Article  Google Scholar 

  • Carter DO, Yellowlees D, Tibbett M (2007) Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94:12–24

    Article  CAS  Google Scholar 

  • Chen P-J, Dong ZM, Zheng SN (1998) An exceptionally well preserved theropod dinosaur from the Yixian Formation of China. Nature 391:147–152

    Article  CAS  Google Scholar 

  • Chuong C-M, Chodankar R, Widelitz RB, Jiang T-X (2000) Evo-Devo of feathers and scales: building complex epithelial appendages. Curr Opin Genet Dev 10:449–456

    Article  CAS  Google Scholar 

  • Clark RB, Cowey JB (1958) Factors controlling the change of shape of certain nemertean and turbellarian worms. J Exp Biol 35:731–748

    Google Scholar 

  • Currie PJ, Chen P-J (2001) Anatomy of Sinosauropteryx prima from Liaoning, northeastern China. Can J Earth Sci 38:1705–1727

    Article  Google Scholar 

  • Duncan RM, Jensen WI (1976) A relationship between avian carcasses and living invertebrates in the epizootiology of avian botulism. J Wildl Dis 12(1):116–126

    Article  CAS  Google Scholar 

  • Efremov EA (1940) Taphonomy: a new branch of paleontology. Pan Am Geol 74:81–93

    Google Scholar 

  • Faux CM, Padian K (2007) The opisthotonic posture of vertebrate skeletons: postmortem contraction or death throes? Paleobiology 33(2):201–226

    Article  Google Scholar 

  • Feduccia A, Lingham-Soliar T, Hinchcliffe JR (2005) Do feathered dinosaurs exist? Testing the hypothesis on neontological and paleontological evidence. J Morphol 266:125–166

    Article  Google Scholar 

  • Ji Q, Ji S (1997) Advances in Sinosauropteryx research. Chin Geol 7:30–32

    Google Scholar 

  • Ji S, Gao C, Liu J, Meng Q, Ji Q (2007) New material of Sinosauropteryx (Theropoda: Compsognathidae) from western Liaoning, China. Acta Geologica Sinica (English Edition) 81(2):177–182

    Article  Google Scholar 

  • Lewis JL, Johnson SL (2001) Collagen architecture and failure processes in bovine patellar cartilages. J Anat 199:483–492

    Article  CAS  Google Scholar 

  • Lingham-Soliar T (1995) Anatomy and functional morphology of the largest marine reptile known, Mosasaurus hoffmanni (Mosasauridae, Reptilia) from the Upper Cretaceous, Upper Maastrichtian of the Netherlands. Phil Trans R Soc Lond B 347:155–180

    Article  Google Scholar 

  • Lingham-Soliar T (2003) The dinosaurian origin of feathers: perspectives from dolphin (Cetacea) collagen fibres. Naturwissenschaften 90:563–567

    Article  CAS  Google Scholar 

  • Lingham-Soliar T (2005a) Dorsal fin in the white shark Carcharodon carcharias: a dynamic stabilizer for fast swimming. J Morphol 263:1–11

    Article  Google Scholar 

  • Lingham-Soliar T (2005b) Caudal fin in the white shark, Carcharodon carcharias (Lamnidae): a dynamic propeller for fast, efficient swimming. J Morphol 264:233–252

    Article  Google Scholar 

  • Lingham-Soliar T (2008) A unique cross-section through the skin of the dinosaur Psittacosaurus from China showing a complex fibre architecture. Proc R Soc Lond B 275:775–780. doi:https://doi.org/10.1098/rspb.2007.1342

    Google Scholar 

  • Lingham-Soliar T (2010a) Dinosaur protofeathers: pushing back the origin of feathers into the Middle Triassic? J Ornithol 151:193–200. doi:https://doi.org/10.1007/s10336-009-0446-7

    Article  Google Scholar 

  • Lingham-Soliar T (2010b) Response to comments by G. Mayr to my paper ‘‘Dinosaur protofeathers: pushing back the origin of feathers into the Middle Triassic?’’. J Ornithol 151:519–521. doi:https://doi.org/10.1007/s10336-009-0475-2

    Article  Google Scholar 

  • Lingham-Soliar T (2011) The evolution of the feather: Sinosauropteryx, a colourful tail. J Ornithol 152(3):567–577. doi:https://doi.org/10.1007/s10336-010-0620-y

    Article  Google Scholar 

  • Lingham-Soliar T, Glab J (2010) Dehydration: a mechanism for the preservation of fine detail in fossilised soft tissue of ancient terrestrial animals. Palaeogeogr Palaeoclimatol Palaeoecol 291:481–487. doi:https://doi.org/10.1016/j.palaeo.2010.03.019

    Article  Google Scholar 

  • Lingham-Soliar T, Plodowski G (2010) The integument of Psittacosaurus from Liaoning Province, China: taphonomy, epidermal patterns and color of a ceratopsian dinosaur. Naturwissenschaften 97:479–486. doi:https://doi.org/10.1007/s00114-010-0661-3

    Article  CAS  Google Scholar 

  • Lingham-Soliar T, Feduccia A, Wang X (2007) A new Chinese specimen indicates that ‘protofeathers’ in the early Cretaceous theropod dinosaur Sinosauropteryx are degraded collagen fibres. Proc R Soc Lond B 274:1823–1829. doi:https://doi.org/10.1098/rspb.2007.0352

    Google Scholar 

  • Lingham-Soliar T, Bonser RHC, Wesley-Smith J (2010) Selective biodegradation of keratin matrix in feather rachis reveals classic bioengineering. Proc R Soc Lond B 277:1161–1168. doi:https://doi.org/10.1098/rspb.2009.1980

    Google Scholar 

  • Linnaeus C (1767) Systema naturae, 12th edn. Laurentius Salvius, Stockholm

    Google Scholar 

  • Manning PL, Morris PM, McMahon A, Jones E, Gize A, Macquaker JHS, Wolff G, Thompson A, Marshall J, Taylor KG et al (2009) Mineralized soft-tissue structure and chemistry in a mummified hadrosaur from the Hell Creek Formation, North Dakota (USA). Proc R Soc Lond B 276:3429–3437. doi:https://doi.org/10.1098/rspb.2009.0812

    Article  CAS  Google Scholar 

  • Mayr G, Peters DS, Plodowski G, Vogel O (2002) Bristle-like integumentary structures at the tail of the horned dinosaur Psittacosaurus. Naturwissenschaften 89:361–365

    Article  CAS  Google Scholar 

  • Monroe JS, Wicander R (2009) The changing earth: exploring geology and evolution. Brooks/Cole, Belmont

    Google Scholar 

  • Pabst DA (1996) Morphology of the subdermal connective sheath of dolphins: a new fibre-wound, thin-walled, pressurized cylinder model for swimming vertebrates. J Zool 238:35–52

    Article  Google Scholar 

  • Payne JA (1965) A summer carrion study of the baby pig Sus scrofa Linneaus. Ecology 46:592–602

    Article  Google Scholar 

  • Prum RO, Brush AH (2003) Which came first, the feather of the bird? Sci Am 288:86–93

    Article  Google Scholar 

  • Schoenly K, Reid W (1987) Dynamics of heterotrophic succession in carrion arthropod assemblages: discreet series or a continuum of change. Oecologia 73:192–202

    Article  CAS  Google Scholar 

  • Wainwright SA, Vosburgh F, Hebrank JH (1978) Shark skin function in locomotion. Science 202:747–749

    Article  CAS  Google Scholar 

  • Xu X, Zhou H, Prum RO (2001) Branched integumental structures in Sinornithosaurus and the origin of birds. Nature 410:200–204

    Article  CAS  Google Scholar 

  • Zhang F, Zhou Z, Dyke G (2006) Feathers and‘feather-like’ integumentary structures in Liaoning birds and dinosaurs. Geol J 41:395–404. doi:https://doi.org/10.1002/gj.1057

    Article  Google Scholar 

  • Zhang F, Kearns SL, Orr PJ, Benton MJ, Zhou Z, Johnson D, Xu X, Wang X (2010) Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds. Nature 463:1075–1078. doi:https://doi.org/10.1038/nature08740

    Article  CAS  Google Scholar 

  • Zhou Z, Barrett PM, Hilton J (2003) An exceptionally preserved Lower Cretaceous ecosystem. Nature 421:807–814

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theagarten Lingham-Soliar.

Additional information

Communicated by F. Bairlein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Movie. 1 (GIF 4.02 mb)

Supplemental Movie. 2 (GIF 8.15 mb)

Supplemental Movie. 3 (GIF 4.92 mb)

10336_2011_787_MOESM4_ESM.mp4

Movie 4. Forensic animation showing stages in the perimortem “death throes” of Sinosauropteryx NIGM 127587 ending in the opisthotonic posture (Fig. 1). The animation includes the suggested environment of volcanic eruptions and emissions of clouds of gasses (see text) that apparently led to the poisoning and death of this dinosaur. (GIF 8349 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lingham-Soliar, T. The evolution of the feather: Sinosauropteryx, life, death and preservation of an alleged feathered dinosaur. J Ornithol 153, 699–711 (2012). https://doi.org/10.1007/s10336-011-0787-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-011-0787-x

Keywords

Navigation