Skip to main content
Log in

Das Endokrinium auf bis zu 7000 Höhenmetern

Effekte der hypobaren Hypoxie auf die Hypothalamus-Hypophysen-Endorgan-Achsen

The endocrine system up to altitudes of 7000 m

Effects of hypobaric hypoxia on the hypothalamus-pituitary-end organ axis

  • Leitthema
  • Published:
Gynäkologische Endokrinologie Aims and scope

Zusammenfassung

Reisen in größere Höhen sowie Bergsteigen haben eine Vielzahl von Effekten auf den Organismus. Ursächlich stehen bei diesen Effekten an erster Stelle der geringe Luftdruck mit dem damit einhergehenden geringeren Sauerstoffpartialdruck und die sich daraus ableitende Hypoxie des Organismus. Die Hypoxie führt zu einer Vielzahl von physiologischen Veränderungen und Adaptationen des kardiorespiratorischen und des metabolischen Systems. Wenig und fast ausschließlich bei Männern wurde bisher der Effekt der hypobaren Hypoxie auf die Hypothalamus-Hypophysen-Endorgan-Hormonachsen untersucht. Die hypobare Hypoxie auf einer Höhe von bis zu etwa 5000 m supprimiert die Hormonachsen nicht oder nur geringfügig. Zudem scheint eine Akklimatisation auf dieser Höhe die marginalen Effekte zu reduzieren. In extremen Höhen über 5000 m kommt es, in Abhängigkeit von der jeweiligen Hormonachse, zu einer Suppression oder Aktivierung. Klinisch und endokrinologisch stehen die Hemmung der Hypothalamus-Hypophysen-Gonaden-Achse sowie die Aktivierung der Hypothalamus-Hypophysen-Nebennierenrinden-Achse im Vordergrund. So sind über etwa 5000 Höhenmetern bei Männern die Konzentrationen von luteinisierendem Hormon und Testosteron im Blut erniedrigt, während die Kortisolkonzentration deutlich erhöht ist.

Abstract

Travelling in high altitudes as well as high altitude mountaineering have several effects on the organism. The main cause of these effects is the low air pressure and the low partial pressure of oxygen resulting in hypoxia. Hypoxia leads to several physiological changes and adaptations of the cardiorespiratory and metabolic systems. The effects of hypoxia on the hypothalamus-pituitary-end organ-hormonal axis have so far been poorly studied and almost exclusively in men. Hypobaric hypoxia at an altitude of up to 5000 m seems to have only minor effects on the suppression of the hormonal axes. Furthermore, these effects seem to be compensated during acclimatization. At extreme altitudes above 5000 m either suppression or activation occurs, depending on the hormonal axis. Clinically and endocrinologically suppression of the hypothalamus-pituitary-gonadal axis and activation of the hypothalamus-pituitary-adrenal axis seem to be most relevant. Above altitudes of 5000 m the concentration of luteinizing hormone and testosterone in the blood of males is reduced and cortisol concentrations are markedly increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Pichler HJ, Leichtle A, Stutz M, Hefti U, Geiser T, Huber AR, Merz TM (2015) Increased microparticles and endothelial function at extreme altitude – a randomized controlled study of the effect of antioxidant supplementation. Eur J Appl Physiol 116:739–748

    Article  Google Scholar 

  2. Veldhuis JD, Keenan DM, Pincus SM (2008) Motivations and methods for analyzing pulsatile hormone secretion. Endocr Rev 29:823–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Benso A, Broglio F, Aimaretti G, Lucatello B, Lanfranco F, Ghigo E, Grottoli S (2007) Endocrine and metabolic responses to extreme altitude and physical exercise in climbers. Eur J Endocrinol 157:733–740

    Article  CAS  PubMed  Google Scholar 

  4. von Wolff M, Pichler Hefti J (2014) Forschung ohne Limit? Endokrinologische Studien auf bis zu 7.000 Höhenmetern. Gynakol Endokrinol 12:55–58

    Article  Google Scholar 

  5. Park JY, Hwang TK, Park HK, Ahn RS (2014) Differences in cardiovascular and hypothalamic-pituitary-adrenal axis functions between high-altitude visitors and natives during a trek on the Annapurna circuit. Neuroendocrinology 99:130–138

    Article  CAS  PubMed  Google Scholar 

  6. Basu M, Pal K, Prasad R, Malhotra AS, Rao KS, Sawhney RC (1997) Pituitary, gonadal and adrenal hormones after prolonged residence at extreme altitude in man. Int J Androl 20:153–158

    Article  CAS  PubMed  Google Scholar 

  7. Woods DR, Davison A, Stacey M, Smith C, Hooper T, Neely D, Turner S, Peaston R, Mellor A (2012) The cortisol response to hypobaric hypoxia at rest and post-exercise. Horm Metab Res 44:302–305

    Article  CAS  PubMed  Google Scholar 

  8. Bloch KE, Latshang TD, Turk AJ, Hess T, Hefti U, Merz TM, Bosch MM, Barthelmes D, Hefti JP, Maggiorini M, Schoch OD (2010) Nocturnal periodic breathing during acclimatization at very high altitude at Mount Muztagh Ata (7,546 m). Am J Respir Crit Care Med 182:562–568

    Article  PubMed  Google Scholar 

  9. Vgontzas AN, Bixler EO, Lin HM, Prolo P, Mastorakos G, Vela-Bueno A, Kales A, Chrousos GP (2001) Chronic insomnia is associated with nyctohemeral activation of the hypothalamic-pituitary-adrenal axis: clinical implications. J Clin Endocrinol Metab 86:3787–3794

    Article  CAS  PubMed  Google Scholar 

  10. D’Aurea C, Poyares D, Piovezan RD, Passos G, Tufik S, Mello MT (2015) Objective short sleep duration is associated with the activity of the hypothalamic-pituitary-adrenal axis in insomnia. Arq Neuropsiquiatr 73:516–519

    PubMed  Google Scholar 

  11. Di Dalmazi G, Pasquali R, Beuschlein F, Reincke M (2015) Subclinical hypercortisolism: a state, a syndrome, or a disease? Eur J Endocrinol 173:M61–71

    Article  PubMed  Google Scholar 

  12. He J, Cui J, Wang R, Gao L, Gao X, Yang L, Zhang Q, Cao J, Yu W (2015) Exposure to hypoxia at high altitude (5380 m) for 1 year induces reversible effects on semen quality and serum reproductive hormone levels in young male adults. High Alt Med Biol 16:216–222

    Article  CAS  PubMed  Google Scholar 

  13. Paredes Suarez M, Varea Teran JR, Garces G, Avila C, Coy DH, Schally AV (1982) Pituitary response to luteinizing hormone-releasing hormone analog at sea level and high altitudes. Obstet Gynecol 59:52–57

    CAS  PubMed  Google Scholar 

  14. Gonzales GF (2013) Serum testosterone levels and excessive erythrocytosis during the process of adaptation to high altitudes. Asian J Androl 15:368–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Escudero F, Gonzales GF, Góñez C (1996) Hormone profile during the menstrual cycle at high altitude. Int J Gynaecol Obstet 55:49–58

    Article  CAS  PubMed  Google Scholar 

  16. Grajewski B, Whelan EA, Lawson CC, Hein MJ, Waters MA, Anderson JL, MacDonald LA, Mertens CJ, Tseng CY, Cassinelli RT 2nd, Luo L (2015) Miscarriage among flight attendants. Epidemiology 26:192–203

    Article  PubMed  PubMed Central  Google Scholar 

  17. Varela V, Houssay AB, Lopardo MI (1982) Modifications of the pituitary-thyroid axis induced by hypobaric hypoxia. Acta Physiol Lat Am 32:53–58

    CAS  PubMed  Google Scholar 

  18. Basu M, Pal K, Malhotra AS, Prasad R, Sawhney RC (1995) Free and total thyroid hormones in humans at extreme altitude. Int J Biometeorol 39:17–21

    Article  CAS  PubMed  Google Scholar 

  19. Reed HL, Quesada M, Hesslink RL Jr, D’Alesandro MM, Hays MT, Christopherson RJ, Turner BV, Young BA (1994) Changes in serum triiodothyronine kinetics and hepatic type I 5’-deiodinase activity of cold-exposed swine. Am J Physiol 266:E786–95

    CAS  PubMed  Google Scholar 

  20. Hackney AC, Feith S, Pozos R, Seale J (1995) Effects of high altitude and cold exposure on resting thyroid hormone concentrations. Aviat Space Environ Med 66:325–329

    CAS  PubMed  Google Scholar 

  21. Nepal O, Pokhrel BR, Khanal K, Gyawali P, Malik SL, Koju R, Kapoor BK (2013) Thyroid hormone levels in highlanders- a comparison between residents of two altitudes in Nepal. Kathmandu Univ Med J (KUMJ) 11:18–21

    CAS  Google Scholar 

  22. Richalet JP, Letournel M, Souberbielle JC (2010) Effects of high-altitude hypoxia on the hormonal response to hypothalamic factors. Am J Physiol Regul Integr Comp Physiol 299:R1685–1692

    Article  CAS  PubMed  Google Scholar 

  23. Xu NY, Chen XQ, Du JZ, Wang TY, Duan C (2004) Intermittent hypoxia causes a suppressed pituitary growth hormone through somatostatin. Neuro Endocrinol Lett 25:361–367

    CAS  PubMed  Google Scholar 

  24. Utsunomiya T, Kadota T, Yanaga T (1984) Pituitary hormone responses to exercise at high altitudes. Nihon Naibunpi Gakkai Zasshi 60:1214–1226

    CAS  PubMed  Google Scholar 

  25. Riedl S, Kluge M, Schweitzer K, Waldhör T, Frisch H (2012) Adaptation of ghrelin and the GH/IGF axis to high altitude. Eur J Endocrinol 166:969–976

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael von Wolff.

Ethics declarations

Interessenkonflikt

M. von Wolff und J. Pichler Hefti geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

T. Strowitzki, Heidelberg

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Wolff, M., Pichler Hefti, J. Das Endokrinium auf bis zu 7000 Höhenmetern. Gynäkologische Endokrinologie 14, 188–196 (2016). https://doi.org/10.1007/s10304-016-0077-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10304-016-0077-z

Schlüsselwörter

Keywords

Navigation