Skip to main content

Advertisement

Log in

Sequential identification of boundary support parameters in a fluid-structure vascular model using patient image data

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Viscoelastic support has been previously established as a valuable modeling ingredient to represent the effect of surrounding tissues and organs in a fluid-structure vascular model. In this paper, we propose a complete methodological chain for the identification of the corresponding boundary support parameters, using patient image data. We consider distance maps of model to image contours as the discrepancy driving the data assimilation approach, which then relies on a combination of (1) state estimation based on the so-called SDF filtering method, designed within the realm of Luenberger observers and well adapted to handling measurements provided by image sequences, and (2) parameter estimation based on a reduced-order UKF filtering method which has no need for tangent operator computations and features natural parallelism to a high degree. Implementation issues are discussed, and we show that the resulting computational effectiveness of the complete estimation chain is comparable to that of a direct simulation. Furthermore, we demonstrate the use of this framework in a realistic application case involving hemodynamics in the thoracic aorta. The estimation of the boundary support parameters proves successful, in particular in that direct modeling simulations based on the estimated parameters are more accurate than with a previous manual expert calibration. This paves the way for complete patient-specific fluid-structure vascular modeling in which all types of available measurements could be used to estimate additional uncertain parameters of biophysical and clinical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alastrué V, Garcia A, Peña E, Rodríguez JF, Martínez M, Doblaré M (2010) Numerical framework for patient-specific computational modelling of vascular tissue. Int J Numer Meth Biomed Eng 26(1): 35–51

    Article  MATH  Google Scholar 

  • Auroux D, Blum J (2008) A nudging-based data assimilation method the back and forth nudging (BFN) algorithm. Nonlinear Process Geophys 15: 305–319

    Article  Google Scholar 

  • Baerentzen J, Aanaes H (2005) Signed distance computation using the angle weighted pseudo-normal. IEEE Trans Vis Comput Graph 11(3): 243–253

    Article  Google Scholar 

  • Bellman RE. (1957) Dynamic programming. Princeton University Press, NJ

    MATH  Google Scholar 

  • Bertoglio C, Chapelle D, Fernández MA, Gerbeau J-F, Moireau P (2012a) State observers of a vascular fluid-structure interaction model through measurements in the solid (submitted to CMAME)

  • Bertoglio C, Moireau P, Gerbeau J-F (2012) Sequential parameter estimation for fluid-structure problems. application to hemodynamics. Int J Numer Meth Biomed Eng 28(4): 434–455. doi:10.1002/cnm.1476

    Article  MathSciNet  Google Scholar 

  • Blum J, Le Dimet F-X, Navon IM (2009) Data assimilation for geophysical fluids. Comput Methods Atmos Oceans 14: 385–441

    MathSciNet  Google Scholar 

  • Brown AG, Shi Y, Arndt A, Müller J, Lawford P, Hose DR (2011) Importance of realistic LVAD profiles for assisted aortic simulations evaluation of optimal outflow anastomosis locations

  • Buerger C, Schaeffter T, King AP (2011) Hierarchical adaptive local affine registration for fast and robust respiratory motion estimation. Med Image Anal 15(4): 551–564

    Article  Google Scholar 

  • Caselles V, Kimmel R, Shaspiro G (1997) Geodesic active contours. Int J Comput Vis 22(1): 61–79

    Article  MATH  Google Scholar 

  • Cebral JR, Castro MA, Appanaboyina S, Putman CM, Millan D, Frangi AM (2005) Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics technique and sensitivity. IEEE Trans Med Imaging 24(4): 457–467

    Article  Google Scholar 

  • Chabiniok R, Moireau P, Lesault P-F, Rahmouni A, Deux J-F, Chapelle D (2011) Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model. Biomech Model Mechanobiol 11(5): 609–630. doi:10.1007/s10237-011-0337-8

    Article  Google Scholar 

  • Chapelle D, Cîndea N, Moireau P (2012) Improving convergence in numerical analysis using observers the wave-like equation case. M3AS doi:10.1142/s0218202512500467

  • Chavent G (2010) Nonlinear least squares for inverse problems. Springer, Berlin

    Book  Google Scholar 

  • Fernández MA, Gerbeau J-F, Grandmont C (2007) A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Intern J Numer Methods Eng 69(4): 794–821

    Article  MATH  Google Scholar 

  • Fernández MA, Gerbeau J-F (2009) Fluid structure interaction problems in haemodynamics. In: Formaggia L., Quarteroni A., Veneziani A. (eds) Mathematical modelling of the cardiovascular system, Chap 9. Springer, Berlin

    Google Scholar 

  • Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes JR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195(41-43): 5685–5706

    Article  MathSciNet  MATH  Google Scholar 

  • Formaggia L, Gerbeau J-F, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191(6-7): 561–582

    Article  MathSciNet  MATH  Google Scholar 

  • Gee MW, Förster C, Wall WA (2010) A computational strategy for prestressing patient-specific biomechanical problems under finite deformation. Int J Numer Methods Biomed Eng 26(1): 52–72

    Article  MATH  Google Scholar 

  • Gerbeau J-F, Vidrascu M, Frey P (2005) Fluid-structure interaction in blood flows on geometries based on medical imaging. Comput Struct 83(2-3): 155–165

    Article  Google Scholar 

  • Julier S, Uhlmann J (2002) Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations. In: Proceedings of IEEE American control conference, pp 887–892

  • Kailath T, Sayed AH, Hassibi B (2000) Linear estimation. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Kerckhoffs RCP, Neal ML, Gu Q, Bassingthwaighte JB, Omens JM, Mcculloch AD (2007) Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation. Ann Biomed Eng 35(1): 1–18

    Article  Google Scholar 

  • Luenberger DG (1971) An introduction to observers. IEEE Trans Autom Control 16: 596–602

    Article  Google Scholar 

  • Martin V, Clément F, Decoene A, Gerbeau J-F (2005) Parameter identification for a one-dimensional blood flow model. ESAIM-Proc 14: 174–200. doi:10.1051/proc:2005014

    MATH  Google Scholar 

  • Moireau P, Chapelle D (2011a) Erratum of article, Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems. COCV 17:406–409. doi:10.1051/cocv/2011001

    Google Scholar 

  • Moireau P, Chapelle D (2011) Reduced-order Unscented Kalman filtering with application to parameter identification in large-dimensional systems. Control Optim Calc Var 17: 380–405. doi:10.1051/cocv/2010006

    Article  MathSciNet  MATH  Google Scholar 

  • Moireau P, Chapelle D, Le Tallec P (2008) Joint state and parameter estimation for distributed mechanical systems. Comput Methods Appl Mech Eng 197: 659–677

    Article  MathSciNet  MATH  Google Scholar 

  • Moireau P, Chapelle D, Le Tallec P (2009) Filtering for distributed mechanical systems using position measurements: perspectives in medical imaging. Inverse Problems 25(3):035,010 (25 pp)

    Google Scholar 

  • Moireau P, Xiao N, Astorino M, Figueroa CA, Chapelle D, Taylor CA, Gerbeau J-F (2011) External tissue support and fluid-structure simulation in blood flows. Biomech Model Mechanobiol 11(1): 1–18. doi:10.1007/s10237-011-0289-z

    Google Scholar 

  • Moreno R, Nicoud F, Veunac L, Rousseau H (2006) Non-linear-transformation-field to build moving meshes for patient specific blood flow simulations. In: Wesseling P, Oñate E, Périaux J (ed) ECCOMAS CFD

  • Navon IM (2009) Data assimilation for numerical weather prediction: a review. In: Park SK, Xu L (eds) Data assimilation for atmospheric, oceanic, hydrologic applications. Springer, Berlin

  • Perego M, Veneziani A, Vergara C (2011) A variational approach for estimating the compliance of the cardiovascular tissue: an inverse fluid-structure interaction problem. SIAM J Sci Comp 33(3): 1181–1211

    Article  MathSciNet  MATH  Google Scholar 

  • Peyré G, Cohen LD (2008) Heuristically driven front propagation for fast geodesic extraction. Int J Comput Vis Biomech 1(1): 55–67

    Google Scholar 

  • Pham DT (2001) Stochastic methods for sequential data assimilation in strongly nonlinear systems. Monthly Weather Rev 129(5): 1194–1207

    Article  MathSciNet  Google Scholar 

  • Pham DT, Verron J, Gourdeau L (1998) Filtres de Kalman singuliers évolutifs pour l’assimilation de données en océanographie. Singular evolutive Kaiman filters for data assimilation in oceanography. Comptes Rendus de I’Académie des Sciences-Series IIA 326(4): 255–260. doi:10.1016/S1251-8050(97)86815-2

    Google Scholar 

  • Piccinelli M, Mirabella L, Passerini T, Haber E, Veneziani A (2010) 4D image-based CFD simulation of a compliant blood vessel. Technical Report TR-2010-027, Emory University

  • Quarteroni A, Ragni S, Veneziani A (2001) Coupling between lumped and distributed models for blood flow problems. Comput Vis Sci, Second AMIF international conference (Il Ciocco, 2000), vol 4, no 2, pp 111–124

  • Simon D (2006) Optimal state estimation: Kalman H and nonlinear approaches. Wiley-Interscience, New York

    Book  Google Scholar 

  • Troianowski G, Taylor CA, Feinstein JA, Vignon-Clementel IE (2011) Three-dimensional simulations in Glenn patients clinically based boundary conditions. Hemodynamic results and sensitivity to input data. J Biomech Eng 133: 111,006

    Article  Google Scholar 

  • Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2010) Outflow boundary conditions for 3 simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput Methods Biomech Biomed Eng

  • Xi J, Lamata P, Lee J, Moireau P, Chapelle D, Smith N (2011) Myocardial transversely isotropic material parameter estimation from in-silico measurements based on reduced-order Unscented Kalman filter. J Mech Behav Biomed Mater 4: 1090–1102. doi:10.1016/j.jmbbm.2011.03.018

    Article  Google Scholar 

  • Xiong G, Figueroa CA, Xiao N, Taylor CA (2010) Simulation of blood flow in deformable vessels using subject-specific geometry and assigned variable mechanical wall properties. Int J Numer Methods Biomed Eng 27(7): 1000–1016

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Moireau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moireau, P., Bertoglio, C., Xiao, N. et al. Sequential identification of boundary support parameters in a fluid-structure vascular model using patient image data. Biomech Model Mechanobiol 12, 475–496 (2013). https://doi.org/10.1007/s10237-012-0418-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-012-0418-3

Keywords

Navigation