Skip to main content
Log in

A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

A novel finite element approach is presented to simulate the mechanical behavior of human red blood cells (RBC, erythrocytes). As the RBC membrane comprises a phospholipid bilayer with an intervening protein network, we propose to model the membrane with two distinct layers. The fairly complex characteristics of the very thin lipid bilayer are represented by special incompressible solid shell elements and an anisotropic viscoelastic constitutive model. Properties of the protein network are modeled with an isotropic hyperelastic third-order material. The elastic behavior of the model is validated with existing optical tweezers studies with quasi-static deformations. Employing material parameters consistent with literature, simulation results are in excellent agreement with experimental data. Available models in literature neglect either the surface area conservation of the RBC membrane or realistic loading conditions of the optical tweezers experiments. The importance of these modeling assumptions, that are both included in this study, are discussed and their influence quantified. For the simulation of the dynamic motion of RBC, the model is extended to incorporate the cytoplasm. This is realized with a monolithic fully coupled fluid-structure interaction simulation, where the fluid is described by the incompressible Navier–Stokes equations in an arbitrary Lagrangian Eulerian framework. It is shown that both membrane viscosity and cytoplasm viscosity have significant influence on simulation results. Characteristic recovery times and energy dissipation for varying strain rates in dynamic laser trap experiments are calculated for the first time and are found to be comparable with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boey SK, Boal DH, Discher DE (1998) Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models. Biophys J 75: 1573–1583

    Article  Google Scholar 

  • Bornemann PB, Wall WA (2009) An incompressible solid-shell element for finite deformations in statics, internal report

  • Canham PB (1970) The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J Theor Biol 26: 61–81

    Article  Google Scholar 

  • Chee CY, Lee HP, Lu C (2008) Using 3d fluid-structure interaction model to analyse the biomechanical properties of erythrocyte. Phys Lett A 372: 1357–1362

    Article  Google Scholar 

  • Chien S, Sung KL, Skalak R, Usami S, Tozeren A (1978) Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane. Biophys J 24: 463–487

    Article  Google Scholar 

  • Dao M, Lim CT, Suresh S (2003) Mechanics of the human red blood cell deformed by optical tweezers. J Mech Phys Solids 51: 2259–2280

    Article  Google Scholar 

  • Dao M, Li J, Suresh S (2006) Molecularly based analysis of deformation of spectrin network and human erythrocyte. Mat Sci Eng C 26: 1232–1244

    Article  Google Scholar 

  • Deuling HJ, Helfrich W (1976) Red blood cell shapes as explained on the basis of curvature elasticity. Biophys J 16: 861–868

    Article  Google Scholar 

  • Discher DE, Mohandas N, Evans EA (1994) Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. Science 266(5187): 1032–1035

    Article  Google Scholar 

  • Discher DE, Mohandas N (1996) Kinematics of red cell aspiration by fluorescence-imaged microdeformation. Biophys J 71: 1680–1694

    Article  Google Scholar 

  • Discher DE, Boal DH, Boey SK (1998) Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. Biophys J 75: 1584–1597

    Article  Google Scholar 

  • Dohrmann CR, Bochev PB (2004) A stabilized finite element method for the Stokes problem based on polynomial pressure projections. Int J Numer Meth Fluid 46: 183–201

    Article  MATH  MathSciNet  Google Scholar 

  • Eggleton CD, Popel AS (1998) Large deformation of red blood cell ghosts in a simple shear flow. Phys Fluids 10: 1834–1845, AIP

    Article  Google Scholar 

  • Evans EA, Fung Y-C (1972) Improved measurements of the erythrocyte geometry. Microvasc Res 4: 335–347

    Article  Google Scholar 

  • Feng F, Klug WS (2006) Finite element modeling of lipid bilayer membranes. J Comput Phys 220: 394–408

    Article  MATH  MathSciNet  Google Scholar 

  • Fischer TM (2004) Shape memory of human red blood cells. Biophys J 86: 3304–3313

    Article  Google Scholar 

  • Förster C, Wall WA, Ramm E (2006) On the geometric conservation law in transient flow calculations on deforming domains. Int J Numer Meth Fluid 50: 1369–1379

    Article  MATH  Google Scholar 

  • Förster C, Wall WA, Ramm E (2009) Stabilized finite element formulation for incompressible flow on distorted meshes. Int J Numer Meth Fluid 60: 1103–1126

    Article  MATH  Google Scholar 

  • Gee M, Küttler U, Wall WA (2010) Truly monolithic algebraic multigrid for fluid-structure interaction. Int J Numer Meth Eng (accepted)

  • Gompper G (2004) Fluid vesicles with viscous membranes in shear flow. Phys Rev Lett 93:258102, American Physical Society

    Article  Google Scholar 

  • Gov NS, Safran SA (2005) Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects. Biophys J 88(3): 1859–1874

    Article  Google Scholar 

  • Hansen JC, Skalak R, Chien S, Hoger A (1996) An elastic network model based on the structure of the red blood cell membrane skeleton. Biophys J 70: 146–166

    Article  Google Scholar 

  • Hartmann D (2010) A multiscale model for red blood cell mechanics. Biomech Model Mechanobiol 9: 1–17

    Article  Google Scholar 

  • Heinrich V, Svetina S, Zeks B (1993) Nonaxisymmetric vesicle shapes in a generalized bilayer-couple model and the transition between oblate and prolate axisymmetric shapes. Phys Rev E 48: 3112

    Article  Google Scholar 

  • Heinrich V, Ritchie K, Mohandas N, Evans EA (2001) Elastic thickness compressibility of the red cell membrane. Biophys J 81: 1452–1463

    Article  Google Scholar 

  • Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch 28C: 693–703

    Google Scholar 

  • Henon S, Lenormand G, Richert A, Gallet F (1999) A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys J 76: 1145–1151

    Article  Google Scholar 

  • Hochmuth RM (1993) Measuring the mechanical properties of individual human blood cells. J Biomech Eng 115: 515–519, ASME

    Article  Google Scholar 

  • Hochmuth RM, Worthy PR, Evans EA (1979) Red cell extensional recovery and the determination of membrane viscosity. Biophys J 26: 101–114

    Article  Google Scholar 

  • Holzapfel G (2000) Nonlinear solid mechanics. A continuum approach for engineering. Wiley, Chichester, UK

    MATH  Google Scholar 

  • Holzapfel GA, Gasser TC (2001) A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput Meth Appl Mech Eng 190: 4379–4403

    Article  Google Scholar 

  • Khairy K, Foo JJ, Howard J (2008) Shapes of red blood cells: comparison of 3d confocal images with the bilayer-couple model. Cell Mol Bioeng 1: 173–181

    Article  Google Scholar 

  • Küttler U, Förster C, Wall WA (2006) A solution for the incompressibility dilemma in partitioned fluid-structure interaction with pure dirichlet fluid domains. Comput Mech 38: 417–429

    Article  MATH  Google Scholar 

  • Küttler U, Gee M, Förster Ch, Comerford A, Wall WA (2010) Coupling strategies for biomedical fluid-structure interaction problems. Int J Numer Meth Biomed Eng 26: 305–321

    Article  MATH  Google Scholar 

  • Le DV, White J, Peraire J, Lim KM, Khoo BC (2009) An implicit immersed boundary method for three-dimensional fluid-membrane interactions. J Comput Phys 228: 8427–8445

    Article  MATH  MathSciNet  Google Scholar 

  • Li J, Dao M, Lim CT, Suresh S (2005) Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys J 88: 3707–3719

    Article  Google Scholar 

  • Lim CT, Dao M, Suresh S, Sow CH, Chew KT (2004) Large deformation of living cells using laser traps. Acta Mater 52: 1837–1845

    Article  Google Scholar 

  • McClain BL, Finkelstein IJ, Fayer MD (2004) Vibrational echo experiments on red blood cells: comparison of the dynamics of cytoplasmic and aqueous hemoglobin. Chem Phys Lett 392: 324–329

    Article  Google Scholar 

  • Mills JP, Qie L, Dao M, Lim CT, Suresh S (2004) Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mech Chem Biosyst 1: 169–180

    Google Scholar 

  • Noguchi H, Gompper G (2005) Dynamics of fluid vesicles in shear flow: effect of membrane viscosity and thermal fluctuations. Phys Rev E 72: 011901–011914, APS

    Article  Google Scholar 

  • Pozrikidis C (2003) Numerical simulation of the flow-induced deformation of red blood cells. Ann Biomed Eng 31: 1194–1205

    Article  Google Scholar 

  • Puig-de-Morales-Marinkovic M, Turner KT, Butler JP, Fredberg JJ, Suresh S (2007) Viscoelasticity of the human red blood cell. Am J Physiol Cell Physiol 293: C597–605

    Article  Google Scholar 

  • Svetina S, Zeks B (1989) Membrane bending energy and shape determination of phospholipid vesicles and red blood cells. Eur Biophys J 17: 101–111

    Article  Google Scholar 

  • Tran-Son-Tay R, Sutera SP, Rao PR (1984) Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion. Biophys J 46: 65–72

    Article  Google Scholar 

  • Vu-Quoc L, Tan XG (2003) Optimal solid shells for non-linear analyses of multilayer composites. I. Statics. Comput Meth Appl Mech Eng 192: 975–1016

    Article  MATH  Google Scholar 

  • Yeoh OH (1990) Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem Tech 63: 792–805

    Article  Google Scholar 

  • Yoon Y-Z, Kotar J, Yoon G, Cicuta P (2008) The nonlinear mechanical response of the red blood cell. Phys Biol 5: 036007

    Article  Google Scholar 

  • Zhou H, Pozrikidis C (1995) Deformation of liquid capsules with incompressible interfaces in simple shear flow. J Fluid Mech 283: 175–200

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang A. Wall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klöppel, T., Wall, W.A. A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes. Biomech Model Mechanobiol 10, 445–459 (2011). https://doi.org/10.1007/s10237-010-0246-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-010-0246-2

Keywords

Navigation