Skip to main content

Advertisement

Log in

Value of serum IgG4 in the diagnosis of IgG4-related disease and in differentiation from rheumatic diseases and other diseases

  • Original Article
  • Published:
Modern Rheumatology

Abstract

IgG4-related disease (IgG4-RD) is a novel disease entity that includes Mikulicz’s disease, autoimmune pancreatitis (AIP), and many other conditions. It is characterized by elevated serum IgG4 levels and abundant IgG4-bearing plasmacyte infiltration of involved organs. We postulated that high levels of serum IgG4 would comprise a useful diagnostic tool, but little information is available about IgG4 in conditions other than IgG4-RD, including rheumatic diseases. Several reports have described cutoff values for serum IgG4 when diagnosing IgG4-RD, but these studies mostly used 135 mg/dL in AIP to differentiate from pancreatic cancer instead of rheumatic and other common diseases. There is no evidence for a cutoff serum IgG4 level of 135 mg/dL for rheumatic diseases and common diseases that are often complicated with rheumatic diseases. The aim of this work was to re-evaluate the usual cutoff serum IgG4 value in AIP (135 mg/dL) that is used to diagnose whole IgG4-RD in the setting of a rheumatic clinic by measuring serum IgG4 levels in IgG4-RD and various disorders. We therefore constructed ROC curves of serum IgG4 levels in 418 patients who attended Sapporo Medical University Hospital due to IgG4-RD and various rheumatic and common disorders. The optimal cut-off value of serum IgG4 for a diagnosis of IgG4-RD was 144 mg/dL, and the sensitivity and specificity were 95.10 and 90.76%, respectively. Levels of serum IgG4 were elevated in IgG4-RD, Churg–Strauss syndrome, multicentric Castleman’s disease, eosinophilic disorders, and in some patients with rheumatoid arthritis, systemic sclerosis, chronic hepatitis, and liver cirrhosis. The usual cut-off value of 135 mg/dL in AIP is useful for diagnosing whole IgG4-RD, but high levels of serum IgG4 are sometimes observed in not only IgG4-RD but also other rheumatic and common diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ghazale A, Chari ST, Smyrk TC, et al. Value of serum IgG4 in the diagnosis of autoimmune pancreatitis and in distinguishing it from pancreatic cancer. Am J Gastroenterol. 2007;102:1646–53.

    Article  PubMed  CAS  Google Scholar 

  2. Choi EK, Kim MH, Lee TY, et al. The sensitivity and specificity of serum immunoglobulin G and immunoglobulin G4 levels in the diagnosis of autoimmune chronic pancreatitis: Korean experience. Pancreas. 2007;35:156–61.

    Article  PubMed  Google Scholar 

  3. Morselli-Labate AM, Pezzilli R. Usefulness of serum IgG4 in the diagnosis and follow up of autoimmune pancreatitis: a systematic literature review and meta-analysis. J Gastroenterol Hepatol. 2009;24:15–36.

    Article  PubMed  Google Scholar 

  4. Song TJ, Kim MH, Moon SH, et al. The combined measurement of total serum IgG and IgG4 may increase diagnostic sensitivity for autoimmune pancreatitis without sacrificing sensitivity, compared with IgG4 alone. Am J Gastroenterol. 2010;105:1655–60.

    Article  PubMed  CAS  Google Scholar 

  5. Sadler R, Chapman RW, Simpson D, et al. The diagnostic significance of serum IgG4 levels in patients with autoimmune pancreatitis: a UK study. Eur J Gastroenterol Hepatol. 2011;23:139–45.

    Article  PubMed  CAS  Google Scholar 

  6. Okazaki K, Kawa S, Kamisawa T, et al. Clinical diagnostic criteria of autoimmune pancreatitis: revised proposal. J Gastroenterol. 2006;41:626–31.

    Article  PubMed  Google Scholar 

  7. Chari ST, Smyrk TC, Levy MJ, et al. Diagnosis of autoimmune pancreatitis: the Mayo Clinic experience. Clin Gastroenterol Hepatol. 2006;4:1010–6.

    Article  PubMed  Google Scholar 

  8. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40:1725.

    Article  PubMed  CAS  Google Scholar 

  9. Miyakis S, Lockshin MD, Atsumi T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost. 2006;4:295–306.

    Article  PubMed  CAS  Google Scholar 

  10. Aletaha D, Neogi T, Silman AJ, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010;62:2569–81.

    Article  PubMed  Google Scholar 

  11. Subcommittee for Scleroderma Criteria of the American Rheumatism Association Diagnostic and Therapeutic Criteria Committee. Preliminary criteria for the classification of systemic sclerosis (scleroderma). Arthritis Rheum. 1980;23:581–90.

    Google Scholar 

  12. Bohan A, Peter JB, Bowman RL, et al. A computer-assisted analysis of 153 patients with polymyositis and dermatomyositis. Medicine (Baltimore). 1977;56:255–86.

    CAS  Google Scholar 

  13. Alarcon-Segovia D, Cardiel MH. Comparison between 3 diagnostic criteria for mixed connective tissue disease: study of 593 patients. J Rheumatol. 1989;16:328–34.

    PubMed  CAS  Google Scholar 

  14. Vitali C, Bombardieri S, Jonsson R, et al. Classification criteria for Sjögren’s syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. Ann Rheum Dis. 2002;61:554–8.

    Article  PubMed  CAS  Google Scholar 

  15. International Study Group for Behçet’s Disease. Evaluation of diagnostic (“classification”) criteria in Behçet’s disease—towards internationally agreed criteria. Br J Rheumatol. 1992;31:299–308.

    Google Scholar 

  16. Guillevin L, Durand-Gasselin B, Cevallos R, et al. Microscopic polyangiitis: clinical and laboratory findings in eighty-five patients. Arthritis Rheum. 1999;42:421–30.

    Article  PubMed  CAS  Google Scholar 

  17. Masi AT, Hunder GG, Lie JT, et al. The American College of Rheumatology 1990 criteria for the classification of Churg–Strauss syndrome (allergic granulomatosis and angiitis). Arthritis Rheum. 1990;33:1094–100.

    Article  PubMed  CAS  Google Scholar 

  18. van Gestel AM, Prevoo ML, van’t Hof MA, van Rijswijk MH, van de Putte LB, van Riel PL. Development and validation of the European League Against Rheumatism response criteria for rheumatoid arthritis. Comparison with the preliminary American College of Rheumatology and the World Health Organization/International League Against Rheumatism Criteria. Arthritis Rheum. 1996;39:34–40.

    Article  PubMed  Google Scholar 

  19. Clements PJ, Lachenbruch PA, Seibold JR, et al. Inter and intraobserver variability of total skin thickness score (modified Rodnan TSS) in systemic sclerosis. J Rheum. 1995;22:1281–5.

    PubMed  CAS  Google Scholar 

  20. Hamano H, Kawa S, Horiuchi A, et al. High serum IgG4 concentrations in patients with sclerosing pancreatitis. N Engl J Med. 2001;344:732–8.

    Article  PubMed  CAS  Google Scholar 

  21. Yamamoto M, Harada S, Ohara M, et al. Clinical and pathological differences between Mikulicz’s disease and Sjögren’s syndrome. Rheumatology (Oxf). 2005;44:227–34.

    Google Scholar 

  22. van der Giessen M, Rossouw E, van Teen TA. Quantification of IgG subclasses in sera of normal adults and healthy children between 4 and 12 years of age. Clin Exp Immunol. 1975;21:501–9.

    PubMed  Google Scholar 

  23. Schur PH, Rosen F, Norman ME. Immunoglobulin subclasses in normal children. Pediatr Res. 1979;13:181–3.

    Article  PubMed  CAS  Google Scholar 

  24. Schauer U, Stemberg F, Rieger CH, et al. IgG subclass concentration in certified reference material 470 and reference values for children and adults determined with the binding site reagents. Clin Chem. 2003;49:1924–9.

    Article  PubMed  CAS  Google Scholar 

  25. Leddy JP, Deitchman J, Bakemeier RF. IgG subclasses measurement of radioimmunoassay in normal and hypogammaglobulinaemic sera. Arthritis Rheum. 1970;13:331–2.

    Google Scholar 

  26. Morell A, Skavaril F. A modified radioimmunoassay for quantitative determination of IgG subclasses in man. Prot Biol Fluids. 1971;19:533–40.

    CAS  Google Scholar 

  27. Shakib F, Stanworth DR, Drew R, et al. A quantitative study of the distribution of IgG sub-classes in a group of normal human sera. J Immunol Methods. 1975;8:17–28.

    Article  PubMed  CAS  Google Scholar 

  28. Oxelius V. Crossed immunoelectrophoresis and electroimmunoassay of human IgG subclass. Acta Path Microbiol Scand Sect C. 1978;86:109–18.

    Google Scholar 

  29. French MAH, Harrison G. Serum IgG subclass concentration in healthy adults: a study using monoclonal antisera. Clin Exp Immnol. 1984;56:473–5.

    CAS  Google Scholar 

  30. Milford-Ward A, White PAE, French MAH, et al. A calibration material for IgG subclass assay. J Clin Lab Immunol. 1984;14:209–10.

    PubMed  CAS  Google Scholar 

  31. Klein F, Skvaril F, Vermeeren R, et al. The quantification of human IgG subclasses in reference preparations. Clin Chim Acta. 1985;150:119–27.

    Article  PubMed  CAS  Google Scholar 

  32. Maddessery JV, Kwon OH, Lee SY, et al. IgG2 subclass deficiency: IgG subclass assay and IgG2 concentrations among 8015 blood donors. Clin Chem. 1988;34:1407–13.

    Google Scholar 

  33. Carr-Smith HD, Overton J, Bradwell AR. IgG subclass value assignment to the protein reference preparation CRM 470. Clin Chem. 1997;43(Suppl 6):S238.

    Google Scholar 

  34. Yamamoto M, Ohara M, Suzuki C, et al. Elevated IgG4 concentrations in serum of patients with Mikulicz’s disease. Scand J Rheumatol. 2004;33:432–3.

    Article  PubMed  CAS  Google Scholar 

  35. Yamamoto M, Takahashi H, Suzuki C, et al. Analysis of serum IgG subclasses in Churg–Strauss syndrome—the meaning of elevated serum levels of IgG4. Intern Med. 2010;49:1365–70.

    Article  PubMed  Google Scholar 

  36. Yamamoto M, Takahashi H, Suzuki C, et al. The analysis of interleukin-6 in patients with systemic IgG4-related plasmacytic syndrome (SIPS)—expansion of SIPS to the territory of Castleman’s disease. Rheumatology (Oxf). 2009;48:860–2.

    Article  CAS  Google Scholar 

  37. Shinoda K, Matsui S, Taki H, et al. Deforming arthropathy in a patient with IgG4-related systemic disease: comment on the article by Stone et al. Arthritis Care Res (Hoboken). 2011;63:172.

    Article  Google Scholar 

  38. Engelmann R, Brandt J, Eggert M, et al. IgG1 and IgG4 are the predominant subclasses among auto-antibodies against two citrullinated antigens in RA. Rheumatology (Oxf). 2008;47:1489–92.

    Article  CAS  Google Scholar 

  39. Bos WH, Bartelds GM, Vis M, et al. Preferential decrease in IgG4 anti-citrullinated protein antibodies during treatment with tumour necrosis factor blocking agents in patients with rheumatoid arthritis. Ann Rheum Dis. 2009;68:558–63.

    Article  PubMed  CAS  Google Scholar 

  40. Wang W, Li J. Identification of natural bispecific antibodies against cyclic citrullinated peptide and immunoglobulin G in rheumatoid arthritis. PLoS One. 2011;6:e16527.

    Article  PubMed  CAS  Google Scholar 

  41. Kuwana M, Okano Y, Pandey JP, et al. Enzyme-linked immunosorbent assay for detection of anti-RNA polymerase III antibody: analytical accuracy and clinical associations in systemic sclerosis. Arthritis Rheum. 2005;52:2425–32.

    Article  PubMed  CAS  Google Scholar 

  42. Okazaki K, Uchida K, Koyabu M, Miyoshi H, Takaoka M. Recent advances in the concept and diagnosis of autoimmune pancreatitis and IgG4-related disease. J Gastroenterol. 2011;46:277–88.

    Article  PubMed  CAS  Google Scholar 

  43. Hummelshoj L, Ryder LP, Poulsen LK. The role of the interleukin-10 subfamily members in immunoglobulin production by human B cells. Scand J Immunol. 2006;64:40–7.

    Article  PubMed  CAS  Google Scholar 

  44. Zen Y, Nakanuma Y. Pathogenesis of IgG4-related disease. Curr Opin Rheumatol. 2011;23:114–8.

    Article  PubMed  CAS  Google Scholar 

  45. Slobodin G, Ahmad MS, Rosner I, et al. Regulatory T cells (CD4(+)CD25(bright)FoxP3(+)) expansion in systemic sclerosis correlates with disease activity and severity. Cell Immunol. 2010;261:77–80.

    Article  PubMed  CAS  Google Scholar 

  46. Sato S, Hasegawa M, Takehara K. Serum levels of interleukin-6 and interleukin-10 correlate with total skin thickness score in patients with systemic sclerosis. J Dermatol Sci. 2001;27:140–6.

    Article  PubMed  CAS  Google Scholar 

  47. Kirmaz C, Terzioglu E, Topalak O, et al. Serum transforming growth factor-β1 (TGF-β1) in patients with cirrhosis, chronic hepatitis B and chronic hepatitis C. Eur Cytokine Netw. 2004;15:112–6.

    PubMed  CAS  Google Scholar 

  48. Verma V, Chakravarti A, Kar P. Cytokine levels of TGF-beta, IL-10, and sTNFαRII in type C chronic liver disease. Dig Dis Sci. 2008;53:2233–7.

    Article  PubMed  CAS  Google Scholar 

  49. Ishida C, Ikebuchi Y, Okamoto K, Murawaki Y. Functional gene polymorphisms of interleukin-10 are associated with liver disease progression in Japanese patients with hepatitis C virus infection. Intern Med. 2011;50:659–66.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We express our gratitude to our collaborators at Medical & Biological Laboratories Co. Ltd, (Nagoya, Japan).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motohisa Yamamoto.

About this article

Cite this article

Yamamoto, M., Tabeya, T., Naishiro, Y. et al. Value of serum IgG4 in the diagnosis of IgG4-related disease and in differentiation from rheumatic diseases and other diseases. Mod Rheumatol 22, 419–425 (2012). https://doi.org/10.1007/s10165-011-0532-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10165-011-0532-6

Keywords

Navigation