Skip to main content

Advertisement

Log in

Risk of macrovascular disease stratified by stage of chronic kidney disease in type 2 diabetic patients: critical level of the estimated glomerular filtration rate and the significance of hyperuricemia

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Although a high prevalence of macrovascular disease (MVD) has been reported in patients with stage 3 chronic kidney disease (CKD), few studies have reported its risk with respect to the underlying cause of kidney disease. This study investigated the prevalence of MVD in type 2 diabetic patients with CKD stratified by CKD stage, as defined by estimated glomerular filtration rate (eGFR), as well as the risk factors for MVD.

Methods

1493 patients with diabetic CKD (1273 males, 220 females) were stratified by CKD stage (stage 1: 39, stage 2: 272, stage 3: 1052, stage 4: 101, stage 5: 29) based on eGFR calculated by the Japanese formula and averaged over 8 months. MVD was defined as one of the following: coronary heart disease (CHD), stroke or arteriosclerosis obliterans (ASO).

Results

The prevalence of MVD was 18.6%. A significant increasing trend in MVD prevalence was observed from stage 3 (17.78%) to 4 (52.48%). According to a receiver operating characteristic curve analysis on MVD prevalence in stage 3 patients, an eGFR of 46.4 ml/min/1.73 m2 was determined to be a critical cut-off level. Proteinuria, eGFR <60 ml/min/1.73 m2 and hyperuricemia were independent risk factors for MVD.

Conclusions

In patients with diabetic CKD, a significant increase in MVD prevalence was observed from stage 3 to 4. An eGFR of 46.4 ml/min/1.73 m2 is a critical level that affects MVD prevalence. From the perspective of cardiorenal association, CKD stage 3 should be divided into two substages. As hyperuricemia is related to an increased risk of MVD, uric acid control may be important in reducing MVD risk in diabetic CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):S1–266.

    Google Scholar 

  2. Mann JFE, Gerstein HC, Pogue J, Lonn E, Dagenais GR, McQueen M, for the HOPE Investigators, et al. Renal insufficiency as a predictor of cardiovascular outcomes and the impact of ramipril: the HOPE Randomized Trial. Ann Intern Med. 2001;134:629–36.

    Article  CAS  Google Scholar 

  3. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.

    Article  CAS  Google Scholar 

  4. Anavekar NS, McMurray JJV, Velazquez EJ, Solomon SD, Kober L, Rouleau JL, et al. Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N Engl J Med. 2004;351:1285–95.

    Article  CAS  Google Scholar 

  5. Keith DS, Nichols GA, Gullion CM, Brown JB, Smith DH. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch Intern Med. 2004;164:659–63.

    Article  Google Scholar 

  6. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.

    Article  CAS  Google Scholar 

  7. Irie F, Iso H, Sairenchi T, Fukasawa N, Yamagishi K, Ikehara S, et al. The relationships of proteinuria, serum creatinine, glomerular filtration rate with cardiovascular disease mortality in Japanese general population. Kidney Int. 2006;69:1264–71.

    Article  CAS  Google Scholar 

  8. Ninomiya T, Kiyohara Y, Kubo M, Tanizaki Y, Doi Y, Okubo K, et al. Chronic kidney disease and cardiovascular disease in a general Japanese population: the Hisayama Study. Kidney Int. 2005;68:228–36.

    Article  Google Scholar 

  9. Yamamoto R, Kanazawa A, Shimizu T, Hirose T, Tanaka Y, Kawamori R, et al. Association between atherosclerosis and newly classified chronic kidney disease stage for Japanese patients with type 2 diabetes. Diabetes Res Clin Pract. 2009;84:39–45.

    Article  Google Scholar 

  10. Hsieh MC, Tien KJ, Perng DS, Hsiao JY, Chang SJ, Liang HT, et al. Diabetic nephropathy and risk factors for peripheral artery disease in Chinese with type 2 diabetes mellitus. Metabolism. 2009;58:504–9.

    Article  CAS  Google Scholar 

  11. Kannel WB, McGee DL. Diabetes and cardiovascular risk factors: the Framingham study. Circulation. 1979;59:8–13.

    Article  CAS  Google Scholar 

  12. Booth GL, Kapral MK, Fung K, Tu JV. Relation between age and cardiovascular disease in men and women with diabetes compared with nondiabetic people: a population-based retrospective cohort study. Lancet. 2006;368:29–36.

    Article  Google Scholar 

  13. Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR, UKPDS GROUP. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 2003;63:225–32.

    Article  Google Scholar 

  14. Stephenson JM, Kenny S, Stevens LK, Fuller JH, Lee E. Proteinuria and mortality in diabetes: the WHO Multinational Study of Vascular Disease in Diabetes. Diabet Med. 1995;12:149–55.

    Article  CAS  Google Scholar 

  15. Pugh JA, Medina R, Ramirez M. Comparison of the course to end-stage renal disease of type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetic nephropathy. Diabetologia. 1993;36:1094–8.

    Article  CAS  Google Scholar 

  16. Nakagawa N, Takahashi F, Chinda J, Kobayashi M, Hayashi Y, Abe M, et al. A newly estimated glomerular filtration rate is independently associated with arterial stiffness in Japanese patients. Hypertens Res. 2008;31:193–201.

    Article  CAS  Google Scholar 

  17. Zoppini G, Targher G, Negri C, Stoico V, Perrone F, Muggeo M, et al. Elevated serum uric acid concentrations independently predict cardiovascular mortality in type 2 diabetic patients. Diabetes Care. 2009;32:1716–20.

    Article  CAS  Google Scholar 

  18. Kodama S, Saito K, Yachi Y, Asumi M, Sugawara A, Totsuka K, et al. Association between serum uric acid and development of type 2 diabetes. Diabetes Care. 2009;32:1737–42.

    Article  CAS  Google Scholar 

  19. Kosugi T, Nakayama T, Heinig M, Zhang L, Yuzawa Y, Sanchez-Lozada LG, et al. The effect of lowering uric acid on renal disease in the type 2 diabetic db/db mice. Am J Physiol Renal Physiol. 2009;297:F481–8.

    Article  CAS  Google Scholar 

  20. Bo S, Cavallo-Perin P, Gentile L, Repetti E, Pagano G. Hypouricemia and hyperuricemia in type 2 diabetes: two different phenotypes. Eur J Clin Invest. 2001;31:318–21.

    Article  CAS  Google Scholar 

  21. Madero M, Sarnak MJ, Wang X, Greene T, Beck GJ, Kusek JW, et al. Uric acid and long-term outcomes in CKD. Am J Kidney Dis. 2009;53:796–803.

    Article  CAS  Google Scholar 

  22. Verdecchia P, Schillaci G, Brunetti P, Santeusanio F, Porcellati C, Brunetti P. Relation between serum uric acid and risk of cardiovascular disease in essential hypertension. The PIUMA Study. Hypertension. 2003;36:1072–8.

    Article  Google Scholar 

  23. Kang DH, Nakagawa T, Feng L, Watanabe S, Han L, Mazzali M, et al. A role for uric acid in the progression of renal disease. J Am Soc Nephrol. 2002;13:2888–97.

    Article  CAS  Google Scholar 

  24. Mazzali M, Kanellis J, Han L, Feng L, Xia YY, Chen Q, et al. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am J Physiol. 2002;282:F991–7.

    CAS  Google Scholar 

  25. Siu YP, Leung KT, Tong MK, Kwan TH. Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am J Kidney Dis. 2006;47:51–9.

    Article  CAS  Google Scholar 

Download references

Conflict of interest

The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Tanaka.

About this article

Cite this article

Tanaka, K., Hara, S., Kushiyama, A. et al. Risk of macrovascular disease stratified by stage of chronic kidney disease in type 2 diabetic patients: critical level of the estimated glomerular filtration rate and the significance of hyperuricemia. Clin Exp Nephrol 15, 391–397 (2011). https://doi.org/10.1007/s10157-011-0420-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-011-0420-6

Keywords

Navigation