Skip to main content

Advertisement

Log in

Update of evidence in chemotherapy for breast cancer

  • Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Although recent progress in drug therapy has facilitated marked advances in chemotherapy for breast cancer, little has been achieved in the development of in dividualized chemotherapy. Prognostic factors such as estrogen receptor (ER), progesterone receptor (PgR), and human epithelial growth factor receptor 2 (HER2) have recently been incorporated into risk classification in the guidelines as predictive factors for treatment response, indicating that the treatment decisions for breast cancer have shifted to factors predictive of treatment response. For the selection of optimum adjuvant chemotherapy, the prediction of treatment responses and judgment of benefits and risks for individual patients are necessary, in addition to the guidelines, for which the investigation of clinical study results, the utilization of computer-based treatment decision tools, and gene profiling may be important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Goldhirsch A, Wood W, Gelber R, et al. (2007) Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer 2007. Ann Oncol 18:1133–1144

    Article  PubMed  CAS  Google Scholar 

  2. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365:1687–1717

    Article  Google Scholar 

  3. Berry DA, Cirrincione C, Henderson IC, et al. (2006) Estrogen receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA 295:1658–1662

    Article  PubMed  CAS  Google Scholar 

  4. Pritchard KI, Shepherd LE, O’Malley FP, et al.; National Cancer Institute of Canada Clinical Trials Group (2006) HER2 and responsiveness of breast cancer to adjuvant chemotherapy. N Engl J Med 354:2103–2111

    Article  PubMed  CAS  Google Scholar 

  5. Paik S, Bryant J, Tan-Chiu E, et al. (2000) HER2 and choice of adjuvant chemotherapy for invasive breast cancer: National Surgical Adjuvant Breast and Bowel Project Protocol B-15. J Natl Cancer Inst 92:1991–1998

    Article  PubMed  CAS  Google Scholar 

  6. Dressler LG, Berry DA, Broadwater G, et al. (2005) Comparison of HER2 status by fluorescence in situ hybridization and immunohistochemistry to predict benefit from dose escalation of adjuvant doxorubicin-based therapy in node-positive breast cancer patients. J Clin Oncol 23:4287–4297

    Article  PubMed  CAS  Google Scholar 

  7. Scandinavian Breast Group Trial 9401; Tanner M, Isola J, Wiklund T, et al. (2006) Topoisomerase IIalpha gene amplification predicts favorable treatment response to tailored and dose-escalated anthracycline-based adjuvant chemotherapy in HER-2/neuamplified breast cancer: Scandinavian Breast Group Trial 9401. J Clin Oncol 24:2428–36. Epub 2006 May 8

    Article  PubMed  CAS  Google Scholar 

  8. Knoop AS, Knudsen H, Balslev E, et al. (2005) Retrospective analysis of topoisomerase IIa amplifications and deletions as predictive markers in primary breast cancer patients randomly assigned to cyclophosphamide, methotrexate, and fluorouracil or cyclophosphamide, epirubicin, and fluorouracil: Danish Breast Cancer Cooperative Group. J Clin Oncol 23:7483–7490

    Article  PubMed  CAS  Google Scholar 

  9. Bhargava R, Lal P, Chen B (2005) HER-2/neu and topoisomerase IIa gene amplification and protein expression in invasive breast carcinomas: chromogenic in situ hybridization and immunohistochemical analyses. Am J Clin Pathol 123:889–895

    Article  PubMed  CAS  Google Scholar 

  10. Martin M, Pienkowski T, Mackey J, et al. (BCIRG 001) (2005) Adjuvant docetaxel for node-positive breast cancer. N Engl J Med 352:2302–2313

    Article  PubMed  CAS  Google Scholar 

  11. Roche H, Fumoleau P, Spielmann M, et al. (2006) Sequential adjuvant epirubicin-based and docetaxel chemotherapy for node-positive breast cancer patients: the FNCLCC PACS 01 Trial. J Clin Oncol 24:5664–5671

    Article  PubMed  CAS  Google Scholar 

  12. Martın M, Rodrıguez-Lescure A, Ruiz A, et al. (2005) Multicenter, randomized phase III study of adjuvant chemotherapy for nodepositive breast cancer comparing six cycles of FE90C versus four cycles of FE90C followed by 8 weekly paclitaxel administrations: interim efficacy analysis of GEICAM 9906 trial. Breast Cancer Symposium: San Antonio 11 Dec 2005, abstract #39

  13. Mamounas EP, Bryant J, Lembersky B, et al. (2005) Paclitaxel after doxorubicin plus cyclophosphamide as adjuvant chemotherapy for node-positive breast cancer: results from NSABP B-28. J Clin Oncol 2005 23:3686–3696

    Article  CAS  Google Scholar 

  14. Henderson IC, Berry DA, Demetri GD, et al. (2003) Improved outcomes from adding sequential paclitaxel but not from escalating doxorubicin dose in an adjuvant chemotherapy regimen for patients with node-positive primary breast cancer. J Clin Oncol 21:976–983

    Article  PubMed  CAS  Google Scholar 

  15. Sparano JA, Wang M, Martino S, et al. (2007) Phase III study of doxorubicin-cyclophosphamide followed by paclitaxel or docetaxel given every 3 weeks or weekly in operable breast cancer: results of Intergroup Trial E1199. J Clin Oncol (Meeting Abstracts) 25: abstract #516

  16. Jones SE, Savin MA, Holmes FA, et al. (2006) Phase III trial comparing doxorubicin plus cyclophosphamide with docetaxel plus cyclophosphamide as adjuvant therapy for operable breast cancer. J Clin Oncol 24:5381–5387

    Article  PubMed  CAS  Google Scholar 

  17. Morris GJ, Naidu S, Topham AK, et al. (2007) Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients: a single-institution compilation compared with the National Cancer Institute’s Surveillance, Epidemiology, and End Results database. Cancer 110:876–884

    Article  PubMed  Google Scholar 

  18. Dent R, Trudeau M, Pritchard KI, et al. (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13:4429–4434

    Article  PubMed  Google Scholar 

  19. Foulkes WD, Brunet JS, Stefansson IM, et al. (2004) The prognostic implication of the basal-like (cyclin E high/p27 low/p53+/glomeruloid-microvascular-proliferation+) phenotype of BRCA1-related breast cancer. Cancer Res 64:830–835

    Article  PubMed  CAS  Google Scholar 

  20. Bhattacharyya A, Ear US, Koller BH, et al. (2000) The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem 275:23899–23903

    Article  PubMed  CAS  Google Scholar 

  21. Tong AH, Evangelista M, Parsons AB, et al. (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368

    Article  PubMed  CAS  Google Scholar 

  22. Huang F, Reeves K, Han X, et al. (2007) Identification of candidate molecular markers predicting sensitivity in solid tumors to dasatinib: rationale for patient selection. Cancer Res 67: 2226–2238

    Article  PubMed  CAS  Google Scholar 

  23. Carey LA, Dees EC, Sawyer L, et al. (2007) The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13:2329–2334

    Article  PubMed  CAS  Google Scholar 

  24. Rouzier R, Perou CM, Symmans WF, et al. (2005) Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11:5678–5685

    Article  PubMed  CAS  Google Scholar 

  25. Paik S, Shak S, Tang G, et al. (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826

    Article  PubMed  CAS  Google Scholar 

  26. Paik S, Tang G, Shak S, et al. (2006) Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptorpositive breast cancer. J Clin Oncol 24:3726–3734

    Article  PubMed  CAS  Google Scholar 

  27. van’t Veer LJ, Dai H, van de Vijver MJ, et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  Google Scholar 

  28. van de Vijver MJ, He YD, van’t Veer LJ, et al. (2002) A geneexpression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009

    Article  PubMed  Google Scholar 

  29. Wang Y, Klijn JG, Zhang Y, et al. (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyasu Yamashiro.

About this article

Cite this article

Yamashiro, H., Toi, M. Update of evidence in chemotherapy for breast cancer. Int J Clin Oncol 13, 3–7 (2008). https://doi.org/10.1007/s10147-007-0719-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-007-0719-1

Key words

Navigation