Skip to main content

Advertisement

Log in

Topical photodynamic treatment with poly-l-lysine–chlorin p6 conjugate improves wound healing by reducing hyperinflammatory response in Pseudomonas aeruginosa-infected wounds of mice

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

We report the results of our investigations on the effect of antimicrobial photodynamic treatment (APDT) with poly-lysine-conjugated chlorin p6 (pl–cp6) on proinflammatory cytokine expression and wound healing in a murine excisional wound model infected with Pseudomonas aeruginosa. Treatment of infected wounds with pl–cp6 and light doses of 60 and 120 J/cm2 reduced the bacterial load by ~1.5 and 2.0 log, respectively, after 24 h. The treated wounds healed ~5 days earlier as compared to untreated control and wound closure was not dependent on light dose. Interestingly, at 96 h post-treatment, drug-treated wounds irradiated at 60 J/cm2 showed considerable reduction of proinflammatory cytokines IL-6 (approximately five times) and TNF-α (approximately four times) compared to untreated control. Further, exposure of culture supernatants to similar light dose and pl–cp6 concentration under in vitro conditions reduced the protease activity by ~50 % as compared to the untreated control, suggesting inactivation of extracellular virulent factors. Additionally, histological analysis of treated infected wounds showed complete reepithelialization, ordered collagen fibers, and considerable decrease in inflammatory cell infiltration compared to untreated wounds. These results imply that pl–cp6-mediated PDT reduces hyperinflammatory response of infected wounds, leading to acceleration of wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ansermino M, Hemsley C (2004) Intensive care management and control of infection. BMJ 329:220–223

    Article  PubMed  Google Scholar 

  2. Biffl WL, Moore EE, Moore FA, Peterson VM (1996) Interleukin-6 in the injured patient. Marker of injury or mediator of inflammation? Ann Surg 224:647–664

    Article  PubMed  CAS  Google Scholar 

  3. Bjarnsholt T, Kirketerp-Møller K, Jensen PØ et al (2008) Why chronic wounds will not heal: a novel hypothesis. Wound Rep Regen 16:2–10

    Article  Google Scholar 

  4. Bryan D, Walker KB, Ferguson M, Thorpe R (2005) Cytokine gene expression in a murine wound healing model. Cytokine 31:429–438

    Article  PubMed  CAS  Google Scholar 

  5. Caminos DA, Spesia MB, Durantini EN (2006) Photodynamic inactivation of Escherichia coli by novel meso-substituted porphyrins by 4-(3-N, N, N-trimethylammoniumpropoxy)phenyl and 4-(trifluoromethyl)phenyl groups. Photochem Photobiol Sci 5:56–65

    Article  PubMed  CAS  Google Scholar 

  6. Dai T, Tegos GP, Zhiyentayev T, Mylonakis E, Hamblin MR (2010) Photodynamic therapy for methicillin-resistant Staphylococcus aureus infection in a mouse skin abrasion model. Lasers Surg Med 42:38–44

    Article  PubMed  Google Scholar 

  7. Deng J, Younge BR, Olshen RA, Goronzy JJ, Weyand CM (2010) Th17 and Th1 T-cell responses in giant cell arthritis. Circulation 23:906–915

    Article  Google Scholar 

  8. Fajardo LF, Kwan HH, Kowalski J, Prionas SD, Allison AC (1992) Dual role of tumor necrosis factor-alpha in angiogenesis. Am J Pathol 140:539–554

    PubMed  CAS  Google Scholar 

  9. Fogle MR, Griswold JA, Oliver JW, Hamood AN (2002) Anti-ETA IgG neutralizes the effects of Pseudomonas aeruginosa exotoxin. A J Surg Res 106:86–98

    Article  CAS  Google Scholar 

  10. Gollnick SO, Evans SS, Baumann H et al (2003) Role of cytokines in photodynamic therapy-induced local and systemic inflammation. Br J Cancer 88:1772–1779

    Article  PubMed  CAS  Google Scholar 

  11. Granick M, Boykin J, Gamelli R, Schultz G, Tenenhaus M (2006) Towards a common language: surgical wound bed preparation and debridement. Wound Repair Regen 14:S1–S10

    Article  PubMed  Google Scholar 

  12. Guo S, Dipietro LA (2010) Factors affecting wound healing. J Dent Res 89:219–229

    Article  PubMed  CAS  Google Scholar 

  13. Hamblin MR, O’Donnell DA, Murthy N, Contag CH, Hasan T (2002) Rapid control of wound infections by targeted photodynamic therapy monitored by in vivo bioluminescence imaging. Photochem Photobiol 75:51–57

    Article  PubMed  CAS  Google Scholar 

  14. Hamblin MR, Zahra T, Contag CH, McManus AT, Hasan T (2003) Optical monitoring and treatment of potentially lethal wound infections in vivo. J Infect Dis 187:1717–1725

    Article  PubMed  Google Scholar 

  15. Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease. Photochem Photobiol Sci 3:436–450

    Article  PubMed  CAS  Google Scholar 

  16. Han YP, Tuan TL, Wu H, Hughes M, Garner WL (2001) TNF-alpha stimulates activation of pro-MMP2 in human skin through NF-(kappa)B mediated induction of MT1-MMP. J Cell Sci 114:131–139

    PubMed  CAS  Google Scholar 

  17. Heggers JP (2003) Assessing and controlling wound infection. Clin Plast Surg 30:25–35

    Article  PubMed  Google Scholar 

  18. Hoober JK, Sery TW, Yamamoto N (1988) Photodynamic sensitizers from chlorophyll: purpurin-18 and chlorin p6. Photochem Photobiol 48:579–582

    Article  PubMed  CAS  Google Scholar 

  19. Ipaktchi K, Mattar A, Niederbichler AD et al (2007) Topical p38 MAPK inhibition reduces bacterial growth in an in vivo burn wound model. Surgery 142:86–93

    Article  PubMed  Google Scholar 

  20. Kanno E, Kawakami K, Ritsu M et al (2011) Wound healing in skin promoted by inoculation with Pseudomonas aeruginosa PAO1: the critical role of tumor necrosis factor-α secreted from infiltrating neutrophils. Wound Repair Regen 19:608–621

    Article  PubMed  Google Scholar 

  21. Kjolseth D, Frank JM, Barker JH et al (1994) Comparison of the effects of commonly used wound agents on epithelialization and neovascularization. J Am Coll Surg 179:305–312

    PubMed  CAS  Google Scholar 

  22. Kömerik N, Wilson M, Poole S (2000) The effect of photodynamic action on two virulence factors of gram-negative bacteria. Photochem Photobiol 72:676–680

    Article  PubMed  Google Scholar 

  23. Kubler A, Finley RK 3rd, Born IA, Mang TS (1996) Effect of photodynamic therapy on the healing of a rat skin flap and its implication for head and neck reconstructive surgery. Lasers Surg Med 18:397–405

    Article  PubMed  CAS  Google Scholar 

  24. Liu R, Bal HS, Desta T, Behl Y, Graves DT (2006) Tumor necrosis factor-alpha mediates diabetes-enhanced apoptosis of matrix-producing cells and impairs diabetic healing. Am J Pathol 168:757–764

    Article  PubMed  CAS  Google Scholar 

  25. Lu Z, Dai T, Huang L, Kurup DB, Tegos GP, Jahnke A, Wharton T, Hamblin MR (2010) Photodynamic therapy with a cationic functionalized fullerene rescues mice from fatal wound infections. Nanomedicine 5:1525–1533

    Article  PubMed  CAS  Google Scholar 

  26. Mc Ripley RJ, Whitney RR (1976) Characterization and quantitation of experimental surgical-wound infections used to evaluate topical antibacterial agents. Antimicrob Agents Chemother 10:38–44

    Article  CAS  Google Scholar 

  27. Meireles GC, Santos JN, Chagas PO, Moura AP, Pinheiro AL (2008) Effectiveness of laser photobiomodulation at 660 or 780 nanometers on the repair of third-degree burns in diabetic rats. Photomed Laser Surg 26:47–54

    Article  PubMed  Google Scholar 

  28. Mori R, Kondo T, Ohshima T, Ishida Y, Mukaida N (2002) Accelerated wound healing in tumor necrosis factor receptor p55-deficient mice with reduced leukocyte infiltration. FASEB J 16:963–974

    Article  PubMed  CAS  Google Scholar 

  29. Neely AN, Hoover DL, Holder IA, Cross AS (1996) Circulating levels of tumour necrosis factor, interleukin 6, and proteolytic activity in a murine model of burn and infection. Burns 22:524–530

    Article  PubMed  CAS  Google Scholar 

  30. Omar GS, Wilson M, Nair SP (2008) Lethal photosensitization of wound-associated microbes using indocyanine green and near-infrared light. BMC Microbiol 8:111

    Article  PubMed  Google Scholar 

  31. Parekh SG, Trauner KB, Zarins B, Foster TE, Anderson RR (1999) Photodynamic modulation of wound healing with BPD-MA and CASP. Lasers Surg Med 24:375–381

    Article  PubMed  CAS  Google Scholar 

  32. Pruitt BA Jr, McManus AT, Kim SH, Goodwin CW (1998) Burn wound infections: current status. World J Surg 22:135–145

    Article  PubMed  Google Scholar 

  33. Sharma M, Bansal H, Gupta PK (2005) Virulence of Pseudomonas aeruginosa cells surviving photodynamic treatment with toluidine blue. Curr Microbiol 50:277–280

    Article  PubMed  CAS  Google Scholar 

  34. Simonetti O, Cirioni O, Orlando F et al (2011) Effectiveness of antimicrobial photodynamic therapy with a single treatment of RLP068/Cl in an experimental model of Staphylococcus aureus wound infection. Br J Dermatol 164:987–995

    Article  PubMed  CAS  Google Scholar 

  35. Smith PK, Krohn RI, Hermanson GT et al (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  PubMed  CAS  Google Scholar 

  36. Smith RS, Harris SG, Phipps R, Iglewski B (2002) The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)homoserine lactone contributes to virulence and induces inflammation in vivo. J Bacteriol 184:1132–1139

    Article  PubMed  CAS  Google Scholar 

  37. Sperandio FF, Simões A, Aranha AC, Corrêa L, Machado O, de Sousa SC (2010) Photodynamic therapy mediated by methylene blue dye in wound healing. Photomed Laser Surg 28:581–587

    Article  PubMed  CAS  Google Scholar 

  38. Tanaka M, Kinoshita M, Yoshihara Y et al (2010) Influence of intra-articular neutrophils on the effects of photodynamic therapy for murine MRSA arthritis. Photochem Photobiol 86:403–409

    Article  PubMed  CAS  Google Scholar 

  39. Wright JB, Lam K, Olson ME, Burrell RE (2003) Is antimicrobial efficacy sufficient? A question concerning the benefits of new dressings. Wounds 15:133–142

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinalini Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahu, K., Sharma, M., Bansal, H. et al. Topical photodynamic treatment with poly-l-lysine–chlorin p6 conjugate improves wound healing by reducing hyperinflammatory response in Pseudomonas aeruginosa-infected wounds of mice. Lasers Med Sci 28, 465–471 (2013). https://doi.org/10.1007/s10103-012-1083-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-012-1083-6

Keywords

Navigation