Skip to main content
Log in

Arterial hypertension, a tricky side of Parkinson’s disease: physiopathology and therapeutic features

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

The role of arterial hypertension (HT) as risk factor for Parkinson’s disease (PD) is still debated. Case–control and retrospective studies do not support an association between HT and PD and the risk of PD seems to be lower in hypertensive than in normotensive subjects. In addition, the use of calcium-channel blockers (CCBs) and angiotensin-converting enzyme inhibitors seems to have a protective effect on the risk of developing PD. In clinical practice, a crucial finding in subjects with PD is the high supine systolic blood pressure (SBP) coupled with orthostatic hypotension (OH). It is not clear whether this SBP load could be a risk factor for target organ damage as this load can be largely due to the drugs used to treat OH (i.e., fludrocortisone acetate, midodrine) or PD itself (i.e., monoamine oxidase inhibitors, dopamine D2-receptor antagonists). This blood pressure (BP) load is largely independent of medications as the 40 % of subjects with PD have a non-dipping pattern of BP during 24 h ambulatory monitoring (24-h ABPM). In PD, nocturnal HT is usually asymptomatic and 24-h ABPM should be used to track both supine HT and OH. Treatment of HT in PD is difficult because the reduction of supine BP could worsen OH. To avoid this, short-acting dihydropyridine CCBs, clonidine or nitrates are recommended, assuming between meals, in late afternoon or in the evening in avoiding an aggravation in the post-prandial hypotension characteristic of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lawes CM (2008) Vander Hoorn S, Rodgers A. International Society of Hypertension. Global burden of blood-pressure-related disease, 2001. Lancet 371:1513–1518

    Article  PubMed  Google Scholar 

  2. Gangavati A, Hajjar I, Quach L et al (2011) Hypertension, orthostatic hypotension, and the risk of falls in a community-dwelling elderly population: the maintenance of balance, independent living, intellect, and zest in the elderly of Boston study. J Am Geriatr Soc 59:383–389

    Article  PubMed  Google Scholar 

  3. Paganini-Hill A (2001) Risk factors for Parkinson’s disease: the leisure world cohort study. Neuroepidemiology 20:118–124

    Article  PubMed  CAS  Google Scholar 

  4. McCann SJ, LeCouteur DG, Green AC et al (1998) The epidemiology of Parkinson’s disease in an Australian population. Neuroepidemiology 17:310–317

    Article  PubMed  CAS  Google Scholar 

  5. Herishanu YO, Medvedovski M, Goldsmith JR et al (2001) A case-control study of Parkinson’s disease in urban population of southern Israel. Can J Neurol Sci 28:144–147

    PubMed  CAS  Google Scholar 

  6. Tan EK, Tan C, Fook-Chong SM et al (2003) Dose dependent protective effect of coffee, tea, and smoking in Parkinson’s disease: a study in ethnic Chinese. J Neurol Sci 216:163–167

    Article  PubMed  Google Scholar 

  7. Semchuk KM, Love EJ, Lee RG (1993) Parkinson’s disease: a test of the multifactorial etiologic hypothesis. Neurology 43:1173–1180

    Article  PubMed  CAS  Google Scholar 

  8. Simon KC, Chen H, Schwarzschild M et al (2007) Hypertension, hypercholesterolemia, diabetes, and risk of Parkinson disease. Neurology 69:1688–1695

    Article  PubMed  Google Scholar 

  9. Miyake Y, Tanaka K, Fukushima W et al (2010) Fukuoka Kinki Parkinson’s Disease Study Group. Case-control study of risk of Parkinson’s disease in relation to hypertension, hypercholesterolemia, and diabetes in Japan. J Neurol Sci 293:82–86

    Article  PubMed  CAS  Google Scholar 

  10. Qiu C, Hu G, Kivipelto M et al (2011) Association of Blood Pressure and Hypertension With the Risk of Parkinson Disease: the National FINRISK Study. Hypertension 57:1094–1100

    Article  PubMed  CAS  Google Scholar 

  11. Biaggioni I, Robertson RM (2002) Hypertension in orthostatic hypotension and autonomic dysfunction. Cardiol Clin 20:291–301

    Article  PubMed  Google Scholar 

  12. Goldstein DS, Pechnik S, Holmes C et al (2003) Association between supine hypertension and orthostatic hypotension in autonomic failure. Hypertension 42:136–142

    Article  PubMed  CAS  Google Scholar 

  13. Pirpiris M, Cox H, Esler M et al (1994) Mineralocorticoid induced hypertension and noradrenaline spillover in man. Clin Exp Hypertens 16:147–161

    Article  PubMed  CAS  Google Scholar 

  14. Low PA, Gilden JL, Freeman R et al (1997) Efficacy of midodrine vs placebo in neurogenic orthostatic hypotension. A randomized, double-blind multicenter study. Midodrine Study Group. JAMA 277:1046–1051

    Article  PubMed  CAS  Google Scholar 

  15. Tipton KF (1997) Monoamine oxidase inhibitors and pressor response to dietary amines. Vopr Med Khim 43:494–503

    PubMed  CAS  Google Scholar 

  16. Sigurdardóttir GR, Nilsson C, Odin P et al (2001) Cardiovascular effects of domperidone in patients with Parkinson’s disease treated with apomorphine. Acta Neurol Scand 104:92–96

    Article  PubMed  Google Scholar 

  17. Jordan J, Biaggioni I (2002) Diagnosis and treatment of supine hypertension in autonomic failure patients with orthostatic hypotension. J Clin Hypertens 4:139–145

    Article  Google Scholar 

  18. Pathak A, Senard JM (2006) Blood pressure disorders during Parkinson’s disease: epidemiology, pathophysiology and management. Expert Rev Neurother 6:1173–1180

    Article  PubMed  Google Scholar 

  19. Ejaz AA, Sekhon IS, Munjal S (2006) Characteristic findings on 24 h ambulatory blood pressure monitoring in a series of patients with Parkinson’s disease. Eur J Intern Med 17:417–420

    Article  PubMed  Google Scholar 

  20. Ejaz AA, Kazory A, Heinig ME (2007) 24 hour blood pressure monitoring in the evaluation of supine hypertension and orthostatic hypotension. J Clin Hypertens 9:952–955

    Article  Google Scholar 

  21. Mancia G, De Backer G, Dominiczak A et al (2007) ESH-ESC practice guidelines for the management of arterial hypertension: ESH-ESC task force on the management of arterial hypertension. J Hypertens 25:1751–1762

    Article  PubMed  CAS  Google Scholar 

  22. Cuspidi C, Macca G, Sampieri L et al (2001) Target organ damage and non-dipping pattern defined by two sessions of ambulatory blood pressure monitoring in recently diagnosed essential hypertensive patients. J Hypertens 19:1539–1545

    Article  PubMed  CAS  Google Scholar 

  23. Hajjar I, Zhao P, Alsop D et al (2010) Association of blood pressure elevation and nocturnal dipping with brain atrophy, perfusion and functional measures in stroke and non stroke individuals. Am J Hypertens 23:17–23

    Article  PubMed  Google Scholar 

  24. Schmidt C, Berg D, Herting et al (2009) Loss of nocturnal blood pressure fall in various extrapyramidal syndromes. Mov Disord 24:2136–2142

    Article  PubMed  Google Scholar 

  25. Cuspidi C, Sala C, Valerio C et al (2011) Nocturnal blood pressure in untreated essential hypertensives. Blood Press 20:335–341

    Article  PubMed  Google Scholar 

  26. Wimbiscus M, Kostenko O, Malone D (2010) MAO inhibitors: risks, benefits, and lore. Cleve Clin J Med 77:859–882

    Article  PubMed  Google Scholar 

  27. Goldstein DS, Eldadah BA, Holmes C et al (2005) Neurocirculatory abnormalities in Parkinson disease with orthostatic hypotension: independence from levodopa treatment. Hypertension 46:1333–1339

    Article  PubMed  CAS  Google Scholar 

  28. Senard JM, Valet P, Durrieu G et al (1990) Adrenergic super-sensitivity in parkinsonians with orthostatic hypotension. Eur J Clin Invest 20:613–619

    Article  PubMed  CAS  Google Scholar 

  29. Senard JM, Brefel-Courbon C, Rascol O et al (2001) Orthostatic hypotension in patients with Parkinson’s disease: pathophysiology and management. Drugs Aging 18:495–505

    Article  PubMed  CAS  Google Scholar 

  30. Galinier M, Senard JM, Valet P et al (1994) Relationship between arterial blood pressure disturbances and alpha adrenoceptor density. Clin Exp Hypertens 16:373–389

    Article  PubMed  CAS  Google Scholar 

  31. Mathias CJ (1995) The classification and nomenclature of autonomic disorders: ending chaos, resolving conflict and hopefully achieving clarity. Clin Autonom Res 5:307–310

    Article  CAS  Google Scholar 

  32. Jacobsen TN, Morgan BJ, Scherrer U et al (1993) Relative contributions of cardiopulmonary and sinoaortic baroreflexes in causing sympathetic activation in the human skeletal muscle circulation during orthostatic stress. Circ Res 73:367–378

    Article  PubMed  CAS  Google Scholar 

  33. Sharabi Y, Li ST, Dendi R et al (2003) Neurotransmitter specificity of sympathetic denervation in Parkinson’s disease. Neurology 60:1036–1039

    Article  PubMed  CAS  Google Scholar 

  34. Goldstein DS (2003) Dysautonomia in Parkinson’s disease: neurocardiological abnormalities. Lancet Neurol 2:669–676

    Article  PubMed  Google Scholar 

  35. Goldstein DS, Holmes C, Dendi R et al (2002) Orthostatic hypotension from sympathetic denervation in Parkinson’s disease. Neurology 58:1247–1255

    Article  PubMed  CAS  Google Scholar 

  36. Diedrich A, Jordan J, Tank J et al (2003) The sympathetic nervous system in hypertension: assessment by blood pressure variability and ganglionic blockade. J Hypertens 21:1677–1686

    Article  PubMed  CAS  Google Scholar 

  37. Barbic F, Perego F, Canesi M et al (2007) Early abnormalities of vascular and cardiac autonomic control in Parkinson’s disease without orthostatic hypotension. Hypertension 49:120–126

    Article  PubMed  CAS  Google Scholar 

  38. Barone P, Antonini A, Colosimo C et al (2009) PRIAMO study group. The PRIAMO study: a multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov Disord 24:1641–1649

    Article  PubMed  Google Scholar 

  39. Scigliano G, Musicco M, Soliveri P et al (2006) Reduced risk factors for vascular disorders in Parkinson disease patients: a case–control study. Stroke 37:1184–1188

    Article  PubMed  Google Scholar 

  40. Grandinetti A, Morens DM, Reed D et al (1994) Prospective study of cigarette smoking and the risk of developing idiopathic Parkinson’s disease. Am J Epidemiol 139:1129–1138

    PubMed  CAS  Google Scholar 

  41. del Hoyo P, García-Redondo A, de Bustos F et al (2010) Oxidative stress in skin fibroblasts cultures from patients with Parkinson’s disease. BMC Neurol 19(10):95

    Article  Google Scholar 

  42. Mortiboys H, Johansen KK, Aasly JO et al (2010) Mitochondrial impairment in patients with Parkinson disease with the G2019S mutation in LRRK2. Neurology 75:2017–2020

    Article  PubMed  CAS  Google Scholar 

  43. Barnum CJ, Tansey MG (2010) Modeling neuroinflammatory pathogenesis of Parkinson’s disease. Prog Brain Res 184:113–132

    Article  PubMed  CAS  Google Scholar 

  44. Guzman JN, Sanchez-Padilla J, Wokosin D et al (2010) Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468:696–700

    Article  PubMed  CAS  Google Scholar 

  45. Simuni T, Borushko E, Avram MJ et al (2010) Tolerability of isradipine in early Parkinson’s disease: a pilot dose escalation study. Mov Disord 25:2863–2866

    Article  PubMed  Google Scholar 

  46. Munoz A, Rey P, Guerra MJ et al (2006) Reduction of dopaminergic degeneration and oxidative stress by inhibition of angiotensin converting enzyme in a MPTP model of parkinsonism. Neuropharmacology 51:112–120

    Article  PubMed  CAS  Google Scholar 

  47. Ritz B, Rhodes SL, Qian L et al (2010) L-type calcium channel blockers and Parkinson disease in Denmark. Ann Neurol 67:600–606

    PubMed  CAS  Google Scholar 

  48. Chan CS, Guzman JN, Ilijic E et al (2007) Rejuvenation protects neurons in mouse models of Parkinson’s disease. Nature 447:1081–1086

    Article  PubMed  CAS  Google Scholar 

  49. Rodnitzky RL (1999) Can calcium antagonists provide a neuroprotective effect in Parkinson’s disease? Drugs 57:845–849

    Article  PubMed  CAS  Google Scholar 

  50. Daniel JR, Mauro VF (1995) Extrapyramidal symptoms associated with calcium channel blockers. Ann Pharmacother 29:73–75

    PubMed  CAS  Google Scholar 

  51. Mena MA, Garcia de Yebenes MJ, Tabernero C et al (1995) Effects of calcium antagonists on the dopamine system. Clin Neuropharmacol 18:410–426

    Article  PubMed  CAS  Google Scholar 

  52. Ton TG, Heckbert SR, Longstreth WT Jr et al (2007) Calcium channel blockers and beta-blockers in relation to Parkinson’s disease. Parkinsonism Relat Disord 13:165–169

    Article  PubMed  Google Scholar 

  53. Reardon KA, Mendelsohn FA, Chai SY et al (2000) The angiotensin converting enzyme (ACE) inhibitor, perindopril, modifies the clinical features of Parkinson’s disease. Aust NZ J Med 30:48–53

    Article  CAS  Google Scholar 

  54. Chang YP, Shih PY (2009) A case of Parkinson’s disease worsened by captopril: an unexpected adverse effect. Mov Disord 24:790

    Article  PubMed  Google Scholar 

  55. Allen AM, MacGregor DP, Chai SY et al (1992) Angiotensin II receptor binding associated with nigrostriatal dopaminergic neurons in human basal ganglia. Ann Neurol 32:339–344

    Article  PubMed  CAS  Google Scholar 

  56. Brown DC, Steward LJ, Ge J, Barnes NM (1996) Ability of angiotensin II to modulate striatal dopamine release via the AT1 receptor in vitro and in vivo. Br J Pharmacol 118(414–420):90

    Google Scholar 

  57. Sarma GR, Kamath V, Mathew T et al (2008) A case of parkinsonism worsened by losartan: a probable new adverse effect. Mov Disord 23:1055

    Article  PubMed  CAS  Google Scholar 

  58. Becker C, Jick SS, Meier CR (2008) Use of antihypertensives and the risk of Parkinson disease. Neurology 70:1438–1444

    Article  PubMed  CAS  Google Scholar 

  59. Blob LF, Sharoky M, Campbell BJ et al (2007) Effects of a tyramine-enriched meal on blood pressure response in healthy male volunteers treated with selegiline transdermal system 6 mg/24 h. CNS Spectr 12:25–34

    PubMed  Google Scholar 

  60. Heinonen EH, Myllylä V (1998) Safety of selegiline (deprenyl) in the treatment of Parkinson’s disease. Drug Saf 19:11–22

    Article  PubMed  CAS  Google Scholar 

  61. White WB, Salzman P (2008) Parkinson’s Rasagiline: efficacy and Safety in the Treatment of Off Parkinson Study Group. Transtelephonic home blood pressure to assess the monoamine oxidase-B inhibitor rasagiline in Parkinson disease. Hypertension 52:587–593

    Article  PubMed  CAS  Google Scholar 

  62. Rojo A, Fontán A, Mena MA et al (2001) Tolcapone increases plasma catecholamine levels in patients with Parkinson’s disease. Parkinsonism Relat Disord 7:93–96

    Article  PubMed  Google Scholar 

  63. Naschitz JE, Slobodin G, Elias N, Rosner I (2006) The patient with supine hypertension and orthostatic hypotension: a clinical dilemma. Postgrad Med J 82:246–253

    Article  PubMed  CAS  Google Scholar 

  64. Mansoor GA (2006) Orthostatic hypotension due to autonomic disorders in the hypertension clinic. Am J Hypertens 19:319–326

    Article  PubMed  Google Scholar 

  65. Shibao C, Gamboa A, Diedrich A et al (2005) Management of hypertension in the setting of autonomic failure: a pathophysiological approach. Hypertension 45:469–476

    Article  PubMed  CAS  Google Scholar 

  66. Shibao C, Gamboa A, Abraham R et al (2006) Clonidine for the treatment of supine hypertension and pressure natriuresis in autonomic failure. Hypertension 47:522–526

    Article  PubMed  CAS  Google Scholar 

  67. Jordan J, Shannon JR, Pohar B et al (1999) Contrasting effects of vasodilators on blood pressure and sodium balance in the hypertension of autonomic failure. J Am Soc Nephrol 10:35

    PubMed  CAS  Google Scholar 

  68. Mehlsen J, Trap-Jensen J (1990) Haemodynamics in postural hypotension—effects of the beta-adrenoceptor partial agonist xamoterol, and pindolol. Eur Heart J 11:56–58

    Article  PubMed  Google Scholar 

  69. Freeman R, Wieling W, Axelrod FB et al (2011) Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clin Auton Res 21:69–72

    Article  PubMed  Google Scholar 

  70. Oldenburg O, Mitchell A, Nurnberger J et al (2001) Ambulatory norepinephrine treatment of severe autonomic orthostatic hypotension. J Am Coll Cardiol 37:219–223

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Mazza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazza, A., Ravenni, R., Antonini, A. et al. Arterial hypertension, a tricky side of Parkinson’s disease: physiopathology and therapeutic features. Neurol Sci 34, 621–627 (2013). https://doi.org/10.1007/s10072-012-1251-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-012-1251-2

Keywords

Navigation